A Comparison Between ESP 30.4 nm and SEM **Measurements**

Leonid Didkovsky, Darrell Judge, and Seth Wieman Space Sciences Center, USC

Why the Continuation of He II (30.4 nm) Irradiance Measurements is Important

- Long-term (14.5 years: 1996 -- now), practically uninterrupted absolute solar irradiance measurements from SEM to study long-term EUV variations during solar cycle
- A proxy for:
- 1. The Earth's ionosphere changes;
- 2. Atmosphere neutral density variations;
- 3. Thermosphere temperature and composition variations;
- 4. Solar models.

ESP *vs* SEM

July 7, 2010 Stanford 3

with 0 – 7 nm

How ESP Irradiance is Calculated

$$
E_i(\lambda, t) = \frac{C_{i,eff}[1 - \frac{dG_i(T, V, TID)}{\Delta t}]}{A \frac{\int_{\lambda_0 - \Delta \lambda}^{\lambda_0 + \Delta \lambda} R_i(\lambda, \alpha, \beta) \frac{\lambda}{hc} F_i(\lambda) d\lambda}{\int_{\lambda_0 - \Delta \lambda}^{\lambda_0 + \Delta \lambda} F_i(\lambda) d\lambda} f_{i,degrad}(t) f_{1AU}(t)}
$$

$$
C_{i,eff}(t_j) = C_{i,meas}(t_j) - C_{i,ch.dark}(t_j) - C_{i,particleBG}(t_j) - \Delta C_{i,vis}(t_j),
$$

• See details: Didkovsky, L., D. Judge, S. Wieman, T. Woods, and A. Jones, "EUV SpectroPhotometer (ESP) in Extreme Ultraviolet Variability Experiment (EVE): Algorithms and Calibrations", Solar Physics, p. 182, doi: 10.1007/s11207-009-9485-8, Dec. 2009 (open access) or at <http://www-rcf.usc.edu/~leonid/papers/SolPhys2010.pdf>

14.5 Years of SEM EUV Flux With EVE/ESP Data Overlapping From $Y=2010120$

A comparison of SEM and ESP Fluxes (Details)

SEM and ESP

SEM to ESP Ratios

SEM_ESP Ratios

The ratio (dark

blue diamonds)

A Search for the Sources of SEM-ESP Differences

Four possible sources:

- **Temperature-related change of dark countrates (SEM only);**
- •**Uncorrected particle-related signal contamination if any (SEM only);**
- **Activity-related change of the second-order influence (both);**
- **ESP degradation (ESP only)**

ESP Measures Darks Daily

Measured ESP dark counts (dark-blue points) show some small (0.3 cnt) occasional fluctuations around the thermal proxy (red) used for irradiance calculations

ESP Detector Temperature

ESP temperature changes are very low, about 0.15 C˚ and are mainly corrected by the ESP Lev 1 program. The uncorrected part is too small to contribute to any significant change of ESP counts.

ESP and SEM Efficiency

We compare below ESP and SEM effective counts with the same variation of dark counts of 1 cnt/0.25s (4 cnt/s).

This example shows that thermal variation in SEM darks could be one of the sources of SEM_ESP difference.

A Proxy for SEM Proton Flux

Proton flux at the SOHO location shows some sporadic fluctuations not correlated to the SEM_ESP changes

July 7, 2010 Stanford 12

Sources of SEM-ESP Differences That Will be Corrected if…

Activity-related change of the second-order influence (both);

• **ESP will be corrected by resuming the use of MEGS (daily) spectra. This option in the ESP Lev 1 program was stopped for the current time while MEGS-B is evaluated;**

• **SEM would be further improved if modeled spectra of solar EUV variability for the 1996 – 2010 time period, with the level of MEGS accuracy, could be available.**

ESP degradation (ESP only)

• **SEM (if continued operation) may provide the ratio of ESP degradation till exact measurements on the next EVE SR flight in 2012.**

Summary

- ESP is an advanced version of SEM and allows us to measure solar irradiances with better accuracy than SEM;
- ESP Ch9 (30.4 nm) provides a SEM-proxy to continue long-term solar EUV measurements available from the USC SEM database since 1996;
- SEM/ESP ratio is changing with the solar
activity, mostly due to the use of the SOLERS-22 spectrum for SEM flux calculations. If the SEM calculation would use the MEGS reference spectrum, the differences between SEM and ESP would be within 5%. Some other factors (SEM dark counts and ESP degradation) add some uncertainty $(5 - 6%)$ to this ratio.

Acknowledgments

• This work was supported by the NASA grant NNX08AM74G and by the University of Colorado **award 153-5979**