

Comparisons: The Devil's in the Details

Frank Eparvier
University of Colorado - LASP
eparvier@colorado.edu
303-492-4546

Warn

What I think my beard makes me look like

What my beard actually makes me look like

Warning 2: Compare Apple to Apples

- Comparisons between measurements by different instruments are not as simple as plotting on the same graph.
- Consideration must be given to:
 - Spectral sampling and resolution
 - Temporal sampling and resolution
 - Data product details

Spectral Considerations (1)

Broadband measurements:

- What are the instrument passbands?
- Are irradiance data products reported as:
 - under instrument response function?
 - in a wavelength range (modeled square response)?
- Is an incident spectral shape assumed?

Example of Broadband Photometers

and

Assumed Solar Spectrum

Photometer Responsivity

Spectral Contributions to Signal

Data Product Reported:

A single number

Spectral Considerations (2)

Spectrally resolved measurements:

- What are the instrument spectral resolutions and slit functions?
- How over/under-sampled is the slit function?
- Are the data products reported:
 - at instrument resolution and sampling?
 - as summed into larger bins? How?

Data at Different Resolutions

Spectral Considerations (3)

Other spectral considerations:

- Are you comparing broadband to spectrally resolved? Or low resolution to high resolution?
 - Do you bin the higher resolution data in wavelength to match the lower resolution?
 - Do you convolve the higher resolution data with the slit function or passband of the lower resolution or broadband data?
- Is the data reported mathematically filtered or smoothed in wavelength?

Temporal Considerations

- What are the integration times?
 - Are they longer than variability?
- What are the measurement cadences?
 - Are you comparing truly simultaneous, or just overlapping measurements?
- Are the data products reported as:
 - averages over time?
 - medians over time?
- Is the data reported mathematically filtered or smoothed in time? Is data thrown out?

Recommendations

- Proper comparisons require work:
 - Resample higher spectral and temporal resolution data at the lowest resolution of the measurements being compared.
 - Make sure you sample/re-sample the measurements in a similar fashion.
 - Understand underlying assumptions in the data processing and apply them to all measurements to be compared.
 - Know the measurement equations for all instruments!

Compare apples to apples!