Application of EUV Measurements for the Derivation of Parameters for the Interstellar Gas Flow through the Heliosphere

Peter Bochsler and Eberhard Möbius*)

Space Science Center and Department of Physics

University of New Hampshire

*) also at Space Science and Applications Los Alamos National Laboratory

Characteristics of the Interstellar Gas

Speed at infinity: 23.5 + 3.0(-2.0) km/s = 4.95 AU/y $T_{He} = 5000-8200$ K

Typical speed at 1 AU (due to gravitational acceleration): 48 km/s = 10 AU/y

Travel time from termination shock to 1 AU: ~ 20 y.

Interaction of Solar EUV with Interstellar Neutrals

Radiation pressure (e.g., resonant interaction of H atoms with Lyman- α)

Photoionization

Ionization of Interstellar Neutrals in the Inner Heliosphere

Photoionization

(Resonant) Charge Exchange with Solar Wind Ions

(e.g.,
$$O^{\circ} + H^{+} \rightarrow O^{+} + H^{\circ}$$

or $H^{\circ} + H^{+} \rightarrow H^{+} + H^{\circ}$)

Collisional Ionization by Solar Wind Electrons

(recombination is very slow because of low densities!)

Spatial and temporal variability of ionization rates at 1 AU

Required time resolution determined by travel times of neutrals: ~ 1 AU/month

Short time flares only of importance if they contribute significant fraction to total EUV fluence

Latitudinal dependence of solar EUV is required

Spatial and temporal variability of ionization rates at 1 AU

Examples of neon and oxygen

IBEX-Lo

IBEX-Hi

15001

A Simple Set-up:

Models describing the motion of neutral interstellar gas atoms through the inner heliosphere are particularly simple (e.g., much simpler than solar wind models)

The IBEX experiments have simple, well-behaved properties

A Simple Set-Up:

Models describing the motion of neutral interstellar gas atoms through the inner heliosphere are particularly simple (e.g., much simpler than solar wind models)

The IBEX-Lo experiment has simple, well-behaved properties

- ➤ Potential for very precise determination of flow parameters
- ➤ Crucial ingredient: Photoionization rates with <10% uncertainties

Importance of Ionization for Pickup Ions

- Pickup Ions are an important secondary product of neutral gas populations in the solar wind
 Generated by Ionization
- Pickup Ion Velocity Distribution reflects
 Neutral Gas Distribution from the Sun to the Observer
- Ionization Rate is of Dual Importance
- Determines radial neutral gas gradient close to the Sun
- → Shape of the Pickup Ion Distribution
- -Determines absolute Pickup Ion Flux
- •Shape of the Pickup Ion Distribution is a window on Transport processes
- → Ionization Rate must be known

Combination of Ionization & Cooling in Pickup Ion Distribution

•PUI Distribution Determined by Ionization & Cooling:

$$f(v/V_{sw}) = \frac{3}{8\rho} \frac{\eta_{ionE} r_E}{V_{sw}^4} N(r(v/V_{sw})) \cdot e^{\frac{2}{6} \frac{v \ddot{0}}{V_{sw}} \dot{\dot{0}}}$$

$$N(r) = N_o e^{-\Lambda \beta (\sqrt{1+2/\beta r}-1)}$$

Along Inflow Axis

- •Varying α changes the shape
- •Varying Ionization, i.e. ∧ changes the shape
- → Ionization Rate needed to evaluate Cooling

Conclusions

- Ionization rates are crucial ingredient to the determination of flow parameters of interstellar neutrals
- Neutrals carry information about the local environment of the heliosphere, which can be collected by remote sensing at 1 AU near Earth
- Gathering this information with high accuracy and high reliability provides a baseline for numerous different fields in heliospheric physics