Posts Tagged: CU-Boulder

LASP to collaborate on new Grand Challenge projects

The University of Colorado Boulder’s cross-campus Grand Challenge initiative this week announced the selection of three new additions to its portfolio starting this fall. The call for proposals, which was announced in June, funded one large research initiative at approximately $1 million per year and two smaller projects at $250,000 per year, each for at least three years. LASP will collaborate on the research initiative and on one of the two smaller projects.

The selections augment the current Grand Challenge portfolio, building on the accomplishments of Earth Lab, Integrated Remote and In Situ Sensing (IRISS), the university’s space minor, and the Center for the Study of Origins.

LASP scientists ready for Cassini’s grand finale

LASP planetary scientist Larry Esposito has been eying the fabulous rings of Saturn for much of his career, beginning as a team scientist on NASA’s Pioneer 11 mission when he discovered the planet’s faint F ring in 1979.

He followed that up with observations of Jupiter’s and Saturn’s rings from the Voyager and Galileo spacecraft, which carried instruments designed and built at LASP. Now, as the principal investigator for the Ultraviolet Imaging Spectrograph (UVIS) on the Cassini-Huygens mission to Saturn, Esposito and his Cassini colleagues are feeling a bit somber as the mission nears its end. The spacecraft has run out of fuel and will disintegrate in Saturn’s dense atmosphere early on the morning of Sept. 15.

Building education satellites: LASP leads international team

LASP has joined forces with universities and space agencies from around the world in an international effort to design and build small satellites as a way to train future scientists and engineers.

The project, known as the International Satellite Program in Research and Education (INSPIRE), so far involves seven nations—the U.S., France, Taiwan, Japan, India, Singapore and Oman—says Project Manager and LASP engineer Amal Chandran.

The aim of INSPIRE is to establish a long-term academic program for developing a constellation of small satellites and a global network of ground stations, Chandran explains.

TSIS shipped to Kennedy Space Center for upcoming launch

A solar instrument package designed and built by LASP, considered a key tool to help monitor the planet’s climate, has arrived at NASA’s Kennedy Space Center in Florida for a targeted November launch.

The instrument suite is called the Total and Spectral solar Irradiance Sensor (TSIS-1) and was built for NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The contract value to LASP is $90 million and includes the dual instrument suite and an associated ground system to manage TSIS mission operations.

CHESS Mission Will Check Out the Space Between Stars

Deep in space between distant stars, space is not empty. Instead, there drifts vast clouds of neutral atoms and molecules, as well as charged plasma particles called the interstellar medium—that may, over millions of years, evolve into new stars and even planets. These floating interstellar reservoirs are the focus of the NASA-funded CHESS sounding rocket mission, which will check out the earliest stages of star formation.

CHESS—short for the Colorado High-resolution Echelle Stellar Spectrograph—is a sounding rocket payload that will fly on a Black Brant IX suborbital sounding rocket late in the night on June 26, 2017. CHESS measures light filtering through the interstellar medium to study the atoms and molecules within, which provides crucial information for understanding the lifecycle of stars.

1,000 Days in Orbit: MAVEN’s Top 10 Discoveries at Mars

NASA’s MAVEN mission to Mars led by LASP and the University of Colorado Boulder will hit a happy milestone on Saturday, June 17: 1,000 days of orbiting the Red Planet.

Since its launch in November 2013 and its orbit insertion in September 2014, the Mars Atmosphere and Volatile Evolution Mission (MAVEN) has been exploring the upper atmosphere of Mars, said LASP associate director and CU Boulder Professor Bruce Jakosky, principal investigator of the mission. MAVEN is bringing insight into how the sun stripped Mars of most of its atmosphere, turning a planet once possibly habitable to microbial life into a barren desert world.

NASA’s Van Allen Probes spot man-made barrier shrouding Earth

Humans have long been shaping Earth’s landscape, but now scientists know we can shape our near-space environment as well. A certain type of communications—very low frequency, or VLF, radio communications—have been found to interact with particles in space, affecting how and where they move. At times, these interactions can create a barrier around Earth against natural high energy particle radiation in space. These results, part of a comprehensive paper on human-induced space weather, were recently published in Space Science Reviews.

“Our recent work with the LASP Van Allen Probes instruments has shown compelling evidence that the radiation belts are quite subject to human-made waves emanating from ground-based radio transmitters. Thus, humans have not only been affecting the oceans and atmosphere of Earth, but have also been affecting near-Earth space,” said Dan Baker, LASP director and co-author of the paper.

GOLD installed on commercial communications satellite

A LASP-built instrument that will provide unprecedented imaging of the Earth’s upper atmosphere has been successfully installed on the commercial satellite that will carry it into geostationary orbit some 22,000 miles above the Earth.

The Global-scale Observations of the Limb and Disk (GOLD) mission, led by the University of Central Florida (UCF) and built and operated by LASP, features a collaboration with satellite owner-operator SES Government Solutions (SES GS) to place an ultraviolet instrument as a hosted payload on a commercial satellite.

Cassini starts its grand finale


Toting an ultraviolet instrument designed and built by LASP, NASA’s Cassini spacecraft made the first of 22 dives between the rings of Saturn and the gaseous planet today, the beginning of the end for one of NASA’s most successful missions ever.

Launched in 1997 and pulling up at Saturn in 2004 for the first of hundreds of orbits through the Jovian system, the Cassini-Huygens mission has fostered scores of dazzling discoveries. These include in-depth studies that date and even weigh the astonishing rings; the discovery of methane lakes on the icy moon Titan; hot water plumes found squirting from the moon Enceladus; and closeup views of the bright auroras at the planet’s poles.

Ready for launch: Instrument suite to assess space weather

A multimillion dollar CU-Boulder/LASP instrument package expected to help scientists better understand potentially damaging space weather is now slated to launch aboard a National Oceanic and Atmospheric Administration satellite on Saturday, Nov. 19.

Designed and built at LASP, the instrument suite known as the Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS) is the first of four identical packages that will fly on four NOAA weather satellites in the coming decade. EXIS will measure energy output from the sun that can affect satellite operations, telecommunications, GPS navigation and power grids on Earth as part of NOAA’s next-generation Geostationary Operational Environmental Satellites-R Series (GOES-R).

MAVEN spacecraft completes one Mars year of science observations

Today, the LASP-led MAVEN mission has completed one Mars year of science observations. One Mars year is just under two Earth years.

The Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft launched on Nov. 18, 2013, and went into orbit around Mars on Sept. 21, 2014. During its time at Mars, MAVEN has answered many questions about the Red Planet.

MinXSS CubeSat fills critical gap in measuring the sun

A bread loaf-sized satellite, designed and built by University of Colorado students, has been collecting data since its deployment from the International Space Station on May 16 and is providing observations of the sun at unprecedented wavelengths and resolution.

The Miniature X-ray Solar Spectrometer (MinXSS)—a 30cm x 10cm x 10 cm, 3-unit satellite—is the first ever science CubeSat launched for NASA’s Science Mission Directorate and has already met its minimum mission science criteria for data and observations.

Launching rockets and STEM dreams for first-generation students

Wearing latex gloves and focused expressions, a group of middle school students gathered around a large cardboard tube recently at the CU Boulder Engineering Center then carefully began wrapping it in fiberglass. All the while, an undergraduate with the CU Students for the Exploration and Development of Space (CU SEDS) organization explained how rockets are designed and built.

Soon, these same students will travel to southern Colorado to launch a rocket they helped assemble as part of a CU Junior Aerospace Engineering Camp. This camp, in particular, brought students to campus from Casa de la Esperanza, a housing community in Longmont for agricultural workers and their families.

LASP scientists, students primed for Juno arrival at Jupiter

A group of LASP scientists and students are anxiously awaiting the arrival of NASA’s Juno spacecraft at Jupiter July 4, a mission expected to reveal the hidden interior of the gas giant as well as keys to how our solar system formed.

Launched in 2011, the spacecraft is slated to orbit Jupiter’s poles 37 times roughly 3,000 miles (4,828 kilometers) above its cloud tops to better understand the origin and evolution of the largest planet in the solar system. Scientists hope to determine if Jupiter has a solid core, measure the planet’s magnetic fields, hunt for water vapor and observe the polar auroras.

Three planetary scientists from LASP and five University of Colorado Boulder (CU-Boulder) students are part of the Juno mission.

LASP research points to electrostatic dust transport in reshaping airless planetary bodies

A team of LASP scientists, led by University of Colorado physics professor Mihály Horányi, has conducted laboratory experiments that may bring closure to a long-standing issue of electrostatic dust transport, explaining a variety of unusual phenomena on the surfaces of airless planetary bodies, including observations from the Apollo era and the recent Rosetta mission to Comet 67P.

Sounding rocket EVE supports tune-up of SDO EVE instrument

Satellites provide data daily on our own planet, our sun and the universe around us. The instruments on these spacecraft are constantly bombarded with solar particles and intense light, not to mention the normal wear and tear from operating in space.

If it were a car that’s a few years old, you would take it to the mechanic for a tune-up to make sure it continues running smoothly. However, with a spacecraft it’s not that easy. Thus, scientists may turn to calibration flights to make sure the instruments are kept up to snuff and providing validated data.

One such flight will be the Extreme UltraViolet (EUV) Variability Experiment, or EVE, from the University of Colorado, Boulder, to observe the sun from a NASA Black Brant IX sounding rocket at 3:02 p.m. EDT May 25 at the White Sands Missile Range in New Mexico.

MinXSS CubeSat set to deploy from ISS, study sun’s soft X-rays

The bread loaf-sized Miniature X-Ray Solar Spectrometer (MinXSS) CubeSat will be deployed from an airlock on the International Space Station (ISS) at 4 a.m. MDT on Monday, May 16, beginning its journey into space where it will study emissions from the sun that can affect ground-based communications systems.

The NASA-funded MinXSS, designed, built, and operated by University of Colorado Boulder students and faculty at LASP and CU-Boulder’s Aerospace Engineering Sciences Department (AES), will operate in Earth’s orbit for up to 12 months. The CubeSat will be deployed from the ISS via a special deployer designed by NanoRacks, LLC.

The MinXSS will observe soft X-rays from the sun, which can disrupt Earth’s upper atmosphere and hamper radio and GPS signals traveling through the region. The intensity of the soft x-ray emissions emitted from the sun is continuously changing over a large range—with peak emission levels occurring during large eruptions on the sun called solar flares.

The Jet Set: Understanding the plume shooting from a Saturn moon

Planetary scientists are a step closer to understanding changes in the puzzling jets of gas and dust grains observed shooting into space from cracks on the icy surface of Enceladus, a moon of Saturn.

First observed in 2005 by NASA’s Cassini spacecraft as it orbited the ringed planet, the plume is coming from a subterranean, salty ocean beneath the moon’s surface. The latest observations with NASA’s Cassini spacecraft now at Saturn by a team including Larry Esposito, LASP planetary scientist and University of Colorado Boulder professor, indicate at least some of the narrow jets there blast with increased fury when the moon is farther from Saturn.

Student Dust Counter got few “hits” during Pluto flyby

A LASP-led and University of Colorado Boulder student-built instrument riding on NASA’s New Horizons spacecraft found only a handful of dust grains, the building blocks of planets, when it whipped by Pluto at 31,000 miles per hour last July.

Data downloaded and analyzed by the New Horizons team indicated the space environment around Pluto and its moons contained only about six dust particles per cubic mile, said LASP planetary scientist and CU-Boulder Professor Fran Bagenal, who leads the New Horizons Particles and Plasma Team.

“The bottom line is that space is mostly empty,” said Bagenal. “Any debris created when Pluto’s moons were captured or created during impacts has long since been removed by planetary processes.”

LASP-built instrument to study the birthplace of stars and planets

To the casual onlooker, the space between the stars is benign and inactive. However, this space, also called the interstellar medium, is very active and contains the raw materials for future solar systems.

On February 21, 2016, the Colorado High-resolution Echelle Stellar Spectrograph (CHESS) will fly on a NASA suborbital sounding rocket on its second flight in two years to study the atoms and molecules in the interstellar medium.

LASP director elected AIAA Fellow

LASP Director, Dan Baker, has been elected Fellow of the American Institute of Aeronautics and Astronautics (AIAA) for its class of 2016. AIAA Fellows are elected based on their notable and valuable contributions to the arts, sciences or technology of aeronautics and astronautics.

In addition to his role as LASP director, Baker is a faculty member in the departments of Physics and Astrophysical and Planetary Sciences at the University of Colorado Boulder. Baker, who chaired the National Research Council’s 2012 Decadal Survey for Solar and Space Physics, is currently involved in a number of NASA missions, including the MAVEN mission to Mars, the Van Allen Probes mission, and the Magnetospheric Multiscale mission.

AIAA is the largest aerospace professional society in the world, serving a diverse range of more than 30,000 individual members from 88 countries, and 95 corporate members. The induction ceremony for the new Fellows will take place at the AIAA Aerospace Spotlight Awards Gala on June 15, 2016 at the Ronald Reagan Building and International Trade Center in Washington, D.C.

MAVEN Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere

Scientists involved in NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission, which is being led by the LASP team at the University of Colorado Boulder, have identified the process that appears to have played a key role in the transition of the Martian climate from an early, warm and wet environment that might have supported surface life to the cold, arid planet Mars is today.

MAVEN data have enabled researchers to determine the rate at which the Martian atmosphere currently is losing gas to space via stripping by the solar wind. The findings reveal that the erosion of Mars’ atmosphere increases significantly during solar storms. The scientific results from the mission appear in the Nov. 5 issues of the journals Science and Geophysical Research Letters.

LASP director receives prestigious Shen Kuo award

LASP director Daniel Baker has received the 2015 Shen Kuo Award from the International Association of Geomagnetism and Aeronomy (IAGA), the top award for interdisciplinary achievements given every four years by the organization.

Baker, a University of Colorado Boulder Distinguished Professor, was presented with the award at the 26th General Assembly of the International Union of Geodesy and Geophysics (IUGG) held in Prague in the Czech Republic. IAGA is a constituent organization of IUGG and is dedicated to advancing, promoting and communicating knowledge of the Earth system, its space environment, and the dynamical processes causing change.

Salt flat indicates some of the last vestiges of surface water on Mars, CU-Boulder study finds

Mars turned cold and dry long ago, but LASP-led research at the University of Colorado Boulder has unveiled evidence of an ancient lake that likely represents some of the last potentially habitable surface water ever to exist on the Red Planet.

The study, published Thursday in the journal Geology, examined an 18-square-mile chloride salt deposit (roughly the size of the city of Boulder) in the planet’s Meridiani region near the Mars Opportunity rover’s landing site. As seen on Earth in locations such as Utah’s Bonneville Salt Flats, large-scale salt deposits are considered to be evidence of evaporated bodies of water.

MAVEN Results Find Mars Behaving Like a Rock Star

If planets had personalities, Mars would be a rock star according to recent preliminary results from NASA’s MAVEN spacecraft. Mars sports a “Mohawk” of escaping atmospheric particles at its poles, “wears” a layer of metal particles high in its atmosphere, and lights up with aurora after being smacked by solar storms. MAVEN is also mapping out the escaping atmospheric particles. The early results are being discussed at a MAVEN-sponsored “new media” workshop held in Berkeley, California, on June 19-21.

Moon engulfed in permanent, lopsided dust cloud

The moon is engulfed in a permanent but lopsided dust cloud that increases in density when annual events like the Geminids spew shooting stars, according to a new study led by LASP scientists at the University of Colorado Boulder.

The cloud is made up primarily of tiny dust grains kicked up from the moon’s surface by the impact of high-speed, interplanetary dust particles, said CU-Boulder physics Professor and LASP research associate Mihály Horányi. A single dust particle from a comet striking the moon’s surface lofts thousands of smaller dust specks into the airless environment, and the lunar cloud is maintained by regular impacts from such particles, said Horányi.

New Horizons in Astronomy

By Fran Bagenal, CU-Boulder Professor of Astrophysical and Planetary Sciences and New Horizons co-investigator

I admit that I love giving presentations on New Horizons to public audiences. It’s the killer combination of Pluto and space exploration. Everyone digs it. The best are astronomy clubs—just bursting with enthusiasm. And my favorite group of all time is the Rocky Mountain Star Stare (RMSS). Based in Colorado Springs, RMSS meets every year on a piece of land close to the Colorado–New Mexico border that is far from city lights. The trek is worth it—the Milky Way blazes across the sky.And these guys have brought along the most amazing astro-geek equipment.

LASP instrument selected for NASA mission to Europa

An instrument to be designed and built at LASP has been selected to fly on a NASA mission to Jupiter’s icy moon, Europa, which is believed to harbor a subsurface ocean that may provide conditions suitable for life.

The LASP instrument, known as the SUrface Dust Mass Analyzer (SUDA), will be used to measure the composition of solid particles released from Europa’s surface due to meteoroid bombardment. The instrument also will be able to measure the properties of small, solid particles believed to be spewing from a hidden ocean within the moon, said University of Colorado Boulder Assistant Professor of Physics, Sascha Kempf, who will serve as principal investigator on the project.

Using a Sounding Rocket to Help Calibrate NASA’s SDO

Watching the sun is dangerous work for a telescope. Solar instruments in space naturally degrade over time, bombarded by a constant stream of solar particles that can cause a film of material to adhere to the optics. Decades of research and engineering skill have improved protecting such optics, but one crucial solution is to regularly recalibrate the instruments to accommodate such changes.

In mid-May, the seventh calibration mission for an instrument on NASA’s Solar Dynamics Observatory, or SDO, will launch into space onboard a sounding rocket for a 15-minute flight. The instrument to be calibrated is called EVE, short for the EUV Variability Experiment, where EUV stands for extreme ultraviolet. EVE’s job is to observe the total energy output of the sun in EUV light waves. The calibration mission is scheduled to launch on May 21, 2015, on a Terrier-Black Brant suborbital sounding rocket around 3 pm EDT from White Sands Missile Range, New Mexico.

PRESS RELEASE: United Arab Emirates to partner with CU-Boulder on 2021 Mars mission

A mission to study dynamic changes in the atmosphere of Mars over days and seasons led by the United Arab Emirates (UAE) involves the University of Colorado Boulder as the leading U.S. scientific-academic partner.

Known as the Emirates Mars Mission, the project is being designed to observe weather phenomena like Martian clouds and dust storms as well as changes in temperature, water vapor and other and gases throughout the layers of the atmosphere. The CU-Boulder part of the mission will be undertaken at LASP.

The mission will be headquartered at and controlled from the Mohammed bin Rashid Space Centre in Dubai, which is affiliated with the Emirates Institution for Advanced Science and Technology. According to Sheikh Mohammed bin Rashid, Vice President and Prime Minister of Dubai, the new Mars probe will be named Hope.

CU-Boulder hitches a ride to space on commercial satellite

The University of Colorado announced today that it has awarded a five-year contract to SES Government Solutions (SES GS), of Reston, Va., to host a NASA-funded science instrument on board SES-14, a communications satellite to be stationed over the Americas.

The Global-Scale Observations of the Limb and Disk (GOLD) mission, a NASA Explorers mission led from the University of Central Florida and built and operated at the University of Colorado (CU-Boulder), will collaborate with SES GS to place a science instrument on a commercial satellite as a hosted payload. This is the first time a university and a commercial spacecraft operator have teamed to host a NASA science mission. At a cost of roughly 10% of a traditional science satellite, working with a communications satellite represents the most cost-effective way to reach geostationary orbit.

After successful mission to Mercury, spacecraft on a crash course with history

NASA’s MESSENGER mission to Mercury, carrying an instrument designed and built at LASP, is slated to run out of fuel and crash into the planet in the coming days after a wildly successful, four-year orbiting mission chock-full of discoveries.

The mission began in 2004, when the MESSENGER spacecraft launched from Florida on a 7-year, 4.7 billion mile journey that involved 15 loops around the sun before the spacecraft settled into orbit around Mercury in March 2011. LASP provided the Mercury Atmospheric and Surface Composition Spectrometer (MASCS), which has been successfully making measurements of Mercury’s surface and its tenuous atmosphere, called the exosphere, since orbit insertion.

LASP Director Awarded Sarabhai Professorship and Prize

LASP Director and University of Colorado Boulder Distinguished Professor, Daniel Baker, was awarded the Vikram A. Sarabhai Professorship and Prize for 2015, which honors internationally distinguished scholars and is named for the founder of India’s space program.

As part of the award, Baker traveled to the Physical Research Laboratory (PRL) in Ahmedabad, Gujarat, India, in February to work with scientists and students and give seminars and lectures. His primary research interests include the study of physical and energetic particle phenomena in the plasma of planetary magnetospheres.

PRESS RELEASE: GOLD Approved for Final Design and Fabrication

The Global-scale Observations of the Limb and Disk (GOLD) mission, part of the NASA Explorers Program, passed a rigorous examination on March 5th at the Goddard Space Flight Center in Maryland, enabling the mission to move into the final design and fabrication phase.

MAVEN spacecraft detects aurora and mysterious dust cloud around Mars

NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has observed two unexpected phenomena in the Martian atmosphere: an unexplained high-altitude dust cloud and aurora that reaches deep into the Martian atmosphere.

The presence of dust at orbital altitudes from about 93 miles (150 kilometers) to 190 miles (300 kilometers) above the surface was not predicted. Although the source and composition of the dust are unknown, there is no hazard to MAVEN and other spacecraft orbiting Mars.

PRESS RELEASE: Saturn Moon’s Ocean May Have Hydrothermal Activity

Scientists with NASA’s Cassini mission, led by LASP and University of Colorado postdoctoral researcher, Sean Hsu, have found that microscopic grains of rock detected near Saturn imply hydrothermal activity is taking place within the moon Enceladus.

This is the first clear indication of an icy moon having hydrothermal activity—in which seawater infiltrates and reacts with a rocky crust, emerging as a heated, mineral-laden solution. The finding adds to the tantalizing possibility that Enceladus, which displays remarkable geologic activity including geysers, could contain environments suitable for living organisms.

The results were published today in the journal Nature.

LASP brings New Horizons science to rural Colorado communities

After a decade-long voyage through the solar system, NASA’s New Horizons mission is scheduled to fly by Pluto in July 2015, carrying with it the LASP-built Student Dust Counter (SDC). The New Horizons mission also involves LASP scientists and CU-Boulder students, who await data from the unprecedented approach and close encounter of the dwarf planet and its five known moons.

In preparation for the July encounter, LASP Office of Communications and Outreach staff recently traveled to two rural Colorado communities and delivered Pluto-related programming to students and their families. Accompanying them was Fran Bagenal, LASP planetary scientist, CU-Boulder professor of astrophysical and planetary sciences, and New Horizons mission co-investigator. Bagenal served as the New Horizons and Pluto science expert during the school visits and gave public presentations to both communities.

CU-Boulder students to help control instruments on MMS from LASP

LASP will serve as the Science Operations Center for a NASA mission launching this month to better understand the physical processes of geomagnetic storms, solar flares and other energetic phenomena throughout the universe.

The $1.1 billion Magnetospheric Multiscale (MMS) mission will be comprised of four identical, octagonal spacecraft flying in a pyramid formation, each carrying 25 instruments. The goal is to study in detail magnetic reconnection, the primary process by which energy is transferred from the solar wind to Earth’s protective magnetic space environment known as the magnetosphere, said LASP Director Daniel Baker, Science Operations Center (SOC) lead scientist for MMS.

LASP Director receives University of Colorado Distinguished Professor Award

Laboratory for Atmospheric and Space Physics (LASP) Director, Dan Baker, was appointed a University of Colorado Distinguished Professor at a Board of Regents meeting on November 20th. Baker is one of six faculty members within the four university campuses to receive the award this year and takes a place among the 79 faculty members who have earned this distinction since its inception in 1977. Nominations for the award were made by a committee of current Distinguished Professors, reviewed by university president, Bruce Benson, and voted for approval by the Board of Regents.

Selection criteria are based on outstanding contributions of university faculty members to their academic disciplines, including creativity and research, teaching or supervision of student learning, and service to the university and affiliated institutions. Baker, director of LASP for two decades, was recognized for his leadership in the space science community and influence on space policy at the federal level. Baker was also lauded for enabling hundreds of undergraduate and graduate students to conduct authentic research at the lab.

Mars spacecraft, including MAVEN, reveal comet flyby effects on Martian atmosphere

Two NASA and one European spacecraft, including NASA’s MAVEN mission—led by LASP—have gathered new information about the basic properties of a wayward comet that buzzed by Mars Oct. 19, directly detecting its effects on the Martian atmosphere.

Data from observations carried out by MAVEN, NASA’s Mars Reconnaissance Orbiter (MRO) and the European Space Agency’s Mars Express spacecraft revealed that debris from the comet, known officially as Comet C/2013 A1 Siding Spring, caused an intense meteor shower and added a new layer of ions, or charged particles, to the ionosphere. The ionosphere is an electrically charged region in the atmosphere that reaches from about 75 miles (120 kilometers) to several hundred miles above the Martian surface.

Using the observations, scientists were able to make a direct connection between the input of debris from the meteor shower to the subsequent formation of the transient layer of ions—the first time such an event has been observed on any planet, including Earth, said the MAVEN research team.

LASP researchers to study origins, evolution of life in universe

NASA has awarded a team led by the University of Colorado Boulder, which includes LASP scientists, more than $7 million to study aspects of the origins, evolution, distribution and future of life in the universe.

The team, led by CU-Boulder Professor Alexis Templeton of the geological sciences department, will be researching what scientists call “rock-powered life.” Rocky planets store enormous amounts of chemical energy, that, when released through the interaction of rocks and water, have the ability to power living systems on Earth as well as on other planets like Mars, said Templeton, principal investigator on the effort.

New Earth-Observing Instrument Makes Successful Balloon Flight

In New Mexico on the morning of Aug. 18, a high-altitude balloon successfully carried the HyperSpectral Imager for Climate Science (HySICS) instrument to an altitude of 123,000 feet, above most of the Earth’s atmosphere, to reach space-like conditions and demonstrate new technologies for acquiring high-accuracy science measurements of the Earth.

Scientists use outgoing shortwave radiance, or the amount of sunlight scattered from Earth’s surface and atmosphere and reflected back toward space, as one of the key metrics for studying our planet’s dynamic climate. Watching these radiances over time helps researchers monitor and better understand the causes of environmental changes and global warming.

Colorado aerospace leaders host program on MAVEN and Mars exploration

The importance of Mars exploration and how the aerospace industry partners with university researchers to advance one of Colorado’s leading economic sectors will be featured at a free program Monday, Sept. 8, in south Denver.

Aerospace leaders will discuss the importance of Mars exploration and the role of the Mars Atmosphere and Volatile EvolutioN, or MAVEN mission, the involvement of Colorado companies in space exploration and the value of public/private partnerships involving university-based research. Speakers will include Jim Green, director of NASA planetary science; Nick Schneider, MAVEN co-investigator and professor in the CU-Boulder Department of Astrophysical and Planetary Sciences; Guy Beutelschies, space exploration systems director, Lockheed Martin; Jim Sponnick, vice president of Atlas and Delta programs, United Launch Alliance; and Patrick Carr, vice president and general manager of command, control and communications systems, Exelis.

Latest CubeSat project strengthens partnership with aerospace industry

A NASA-funded miniature satellite built by University of Colorado Boulder students to scrutinize solar flares erupting from the sun’s surface is the latest example of the university’s commitment to advancing aerospace technology and space science through strong partnerships with industry and government.

The $1 million Miniature X-ray Solar Spectrometer (MinXSS), led by CU-Boulder faculty in the Laboratory for Atmospheric and Space Physics and the Department of Aerospace Engineering Sciences, recently was selected by NASA for launch in January 2015 from the International Space Station.

LASP instrument aboard NASA lunar mission set to impact moon

At the conclusion of a highly successful 130-day mission, the NASA Lunar Atmosphere and Dust Environment Explorer (LADEE) is planned to impact the surface of the moon on April 21, 2014. LADEE carries the Lunar Dust Experiment (LDEX), which is the latest in a series of dust detectors designed and built at LASP.

New study shows citizens count lunar craters on par with professionals

A new study led by LASP research scientist Stuart Robbins indicates that volunteer “citizen scientists” counted lunar craters at rates comparable to professional scientists. Using images from NASA’s Lunar Reconnaissance Orbiter, volunteers for CosmoQuest, which contributes real science data to NASA missions, analyzed the high-resolution photos of the Moon for impact craters. Robbins and his co-authors then compared the volunteers’ results to those of eight professional planetary crater-counters.

MAVEN on Track to Carry Out its Science Mission

The MAVEN spacecraft and all of its science instruments have completed their initial checkout, and all of them are working as expected. This means that MAVEN is on track to carry out its full science mission as originally planned.

The mission is designed to explore Mars’ upper atmosphere. It will determine the role that escape of gas from the atmosphere to space has played in changing the climate throughout the planet’s history. MAVEN was launched on November 18, 2013, and will go into orbit around Mars on the evening of Sept. 21, 2014 (10 p.m. EDT).

After a 5-week commissioning phase in orbit, during which it will get into its science-mapping orbit, deploy its booms, and do a final checkout of the science instruments, it will carry out a one-Earth-year mission. It will observe the structure and composition of the upper atmosphere, determine the rate of escape of gas to space today and the processes controlling it, and make measurements that will allow it to determine the total amount of gas lost to space over time.

MAVEN launched to study upper atmosphere of Mars

A LASP-led mission that will investigate how Mars lost its atmosphere and abundant liquid water launched into space on November 18 at 11:28 a.m. MST from Cape Canaveral Air Force Station in Florida.

The Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft separated from an Atlas V Centaur rocket’s second stage 53 minutes after launch. The solar arrays deployed approximately one hour after launch and currently power the spacecraft. MAVEN now is embarking on a 10-month interplanetary cruise before arriving at Mars next September.

Get involved: MAVEN blast-off to Mars!

MAVEN is set to launch aboard a United Launch Alliance Atlas V 401 rocket Nov. 18. The two-hour launch window extends from 1:28 to 3:28 p.m. EST. Liftoff will occur from Cape Canaveral Air Force Station’s Space Launch Complex 41.

Launch commentary coverage, as well as prelaunch media briefings, will be carried live on NASA Television and the agency’s website.

The following is a list of MAVEN launch-related briefings, events, and activities.

MAVEN haiku selected for travel to Mars

Haiku recognized in the LASP-led MAVEN message-to-Mars contest were announced today on the Going to Mars campaign website. Haiku authors from around the world—including Palestine, India, Australia, and Europe—entered the contest. The top five winners—all those whose haiku received 1,000 votes or more—include popular British blogger Benedict Smith and well-known American poet Vanna Bonta. Other entries receiving special recognition include MAVEN team selections in categories ranging from haiku specifically about MAVEN to humorous haiku.

Send Your Name and Message to Mars with MAVEN

The MAVEN mission is inviting people from all over the world to submit their names and a unique message online. Participants’ names and the top-voted messages will be burned to a specially-designed DVD and sent to the Red Planet aboard the MAVEN spacecraft, scheduled to launch in November, 2013.

LASP researcher leads study on migration of Mars volcanic activity

LASP scientist and CU-Boulder Department of Geological Sciences Assistant Professor, Brian Hynek, led a recent study detailing the earliest history of the development of the Tharsis volcanoes on Mars. The Tharsis region, one of the most prominent features on Mars, covers one quarter of the planet, rises 10 km above the surrounding flatlands, and has had near-continuous volcanic activity for roughly 4 billion years.