Posts Tagged: CU Students

Mars spacecraft, including MAVEN, reveal comet flyby effects on Martian atmosphere

Two NASA and one European spacecraft, including NASA’s MAVEN mission—led by LASP—have gathered new information about the basic properties of a wayward comet that buzzed by Mars Oct. 19, directly detecting its effects on the Martian atmosphere.

Data from observations carried out by MAVEN, NASA’s Mars Reconnaissance Orbiter (MRO) and the European Space Agency’s Mars Express spacecraft revealed that debris from the comet, known officially as Comet C/2013 A1 Siding Spring, caused an intense meteor shower and added a new layer of ions, or charged particles, to the ionosphere. The ionosphere is an electrically charged region in the atmosphere that reaches from about 75 miles (120 kilometers) to several hundred miles above the Martian surface.

Using the observations, scientists were able to make a direct connection between the input of debris from the meteor shower to the subsequent formation of the transient layer of ions—the first time such an event has been observed on any planet, including Earth, said the MAVEN research team.

LASP celebrates a year of exploration, discovery, and accomplishments

As 2013 draws to a close, it is amazing to reflect on all of LASP’s accomplishments in its 65th year! The last four months of the year were punctuated by launches to the moon, and Earth and Mars orbits for the LDEX, TCTE, and MAVEN instruments that LASP designed, built, and now operates.

Get involved: MAVEN blast-off to Mars!

MAVEN is set to launch aboard a United Launch Alliance Atlas V 401 rocket Nov. 18. The two-hour launch window extends from 1:28 to 3:28 p.m. EST. Liftoff will occur from Cape Canaveral Air Force Station’s Space Launch Complex 41.

Launch commentary coverage, as well as prelaunch media briefings, will be carried live on NASA Television and the agency’s website.

The following is a list of MAVEN launch-related briefings, events, and activities.

Study shows how early Earth could support life

A new study by LASP research scientist Brian Toon and doctoral student Eric Wolf indicates that explaining Earth’s early conditions, which were warm enough to support life despite a 20-percent dimmer Sun, may be simpler than believed. The study,  published in the July issue of Astrobiology, indicates that the Archean eon, 2.8 billion years ago,… Read more »

Student-built satellite delivered to California for upcoming launch

CU-Boulder students, working under the guidance of LASP scientists and engineers, have finished building a satellite to study space weather and have sent it to California Polytechnic Institute to begin integration with launch vehicle systems. More than 50 graduate and undergraduate students have contributed to designing and building the Colorado Student Space Weather Experiment (CSSWE), an $840,000 CubeSat mission funded by the National Science Foundation. The satellite is scheduled to launch into low-Earth polar orbit in early August 2012 as a secondary payload under NASA’s Educational Launch of Nanosatellites (ELaNa) program.

Students use Student Dust Counter data to improve understanding of space dust

Using data from the NASA New Horizons mission to Pluto, LASP scientists have made new measurements of interplanetary dust density. The data, collected from the CU-Boulder student-built Student Dust Counter (SDC) and the meteoroid detector on the Pioneer 10 spacecraft, represent measurements of the micro-sized dust grains from the Earth out to the present position of the SDC, at approximately 20 Astronomical Units (AU). One AU is equal to the average distance from the Sun to the Earth, or approximately 93 million miles (149.5 million km).

Early Earth may have been prone to deep freezes

New research led by LASP scientist Brian Toon uses a three-dimensional (3-D) model of Earth’s climate to assess the role of various factors in influencing historic global temperatures and resulting sea ice formation and change. Toon, along with doctoral student Eric Wolf, adapted the 3-D model to incorporate the complex and dynamic interactions between the atmosphere, cloud formation, energy radiation, land and ice cover, and the hydrological cycle to demonstrate how the Earth maintained a global mean temperature hospitable to life. The model attempts to solve the “faint young sun paradox” of the Archean Eon—from about 3.8 billion to 2.5 billion years ago—when the Sun was up to 30 percent less active, but geologic evidence points to a climate as warm or warmer than today.

As Voyager 1 nears edge of Solar System, CU scientists look back

In 1977, Jimmy Carter was sworn in as president, Elvis died, Virginia park ranger Roy Sullivan was hit by lightning a record seventh time and two NASA space probes destined to turn planetary science on its head launched from Cape Canaveral, Fla. The identical spacecraft, Voyager 1 and Voyager 2, were launched in the summer and programmed to pass by Jupiter and Saturn on different paths. Voyager 2 went on to visit Uranus and Neptune, completing the “Grand Tour of the Solar System,” perhaps the most exciting interplanetary mission ever flown. University of Colorado Boulder scientists, who designed and built identical instruments for Voyager 1 and Voyager 2, were as stunned as anyone when the spacecraft began sending back data to Earth.

LASP move eases crowding and supports collaboration

LASP Science Division personnel are moving to a new location on the CU Research Campus beginning October 14. According to LASP Director, Dan Baker, the benefits of the move are two-fold. Baker said, “LASP is a growing presence on campus. We are excited by the opportunity to expand our physical space to better address our current needs, while consolidating our science staff for more fluid collaboration.”

UARS satellite carrying LASP-built instrument set for re-entry

NASA’s Upper Atmosphere Research Satellite (UARS), launched in September 1991 and deployed from the Space Shuttle Discovery (STS-48), is re-entering Earth’s atmosphere and will complete its decent on Friday, September 23. LASP designed and built the Solar Stellar Irradiance Comparison Experiment (SOLSTICE) on board UARS and operated the instrument after launch. Throughout 14 years of successful operations, SOLSTICE made precise measurements of the Sun’s ultraviolet and far ultraviolet spectral irradiance.

LASP celebrates 15 years of continuous spacecraft operations

September 2011 marks a significant milestone for LASP, as our Mission Operations and Data Systems (MODS) team celebrates 15 years of continuous spacecraft operations. From long-standing science missions, such as ICESat, which have brought in important data over years—to newer missions, such as Kepler’s exciting search for Earth-like planets—LASP MODS has offered reliable spacecraft operations to agencies including NASA.

LASP scientists instrumental in mission to Jupiter

Several LASP scientists are involved in NASA’s upcoming Juno mission to Jupiter. Scheduled to launch on August 5, 2011, the mission will improve understanding of our solar system origins by revealing details about the formation and evolution of the gas giant. The spacecraft will embark on a five-year, 400-million-mile voyage to Jupiter, where it will orbit the planet 33 times, collecting data for more than one Earth year.

PRESS RELEASE: LASP-led mission to Mars achieves major milestone

The CU/LASP-led mission to Mars, devoted to understanding the Martian upper atmosphere, reached a major milestone last week when it successfully completed its Mission Critical Design Review (CDR) at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. An independent review board, comprised of reviewers from NASA and several external organizations, met from July 11-15 to validate the system design of the Mars Atmosphere and Volatile Evolution, or MAVEN, mission.

CU-Boulder students build NSF satellite to study space weather

LASP/CU-Boulder students are designing and building a satellite that will study space weather—changes in near-Earth space conditions that adversely affect Earth-orbiting spacecraft and communication technologies. The Colorado Student Space Weather Experiment (CSSWE) is an $840,000 CubeSat mission funded by the National Science Foundation. CSSWE is scheduled to launch into low-Earth polar orbit in June 2012 as a secondary payload under NASA’s Educational Launch of Nanosatellites (ELaNa) program.

PRESS RELEASE: Students see ICESat satellite through the end of its life

University of Colorado at Boulder (CU) Laboratory for Atmospheric and Space Physics (LASP) professionals and students have completed their role operating the NASA ICESat mission, one of five missions operated at LASP.  ICESat reached the end of its productive seven-year life in June, when NASA began decommissioning the satellite because of instrument failure. The remaining… Read more »