Posts Tagged: Jim Scott

LASP scientists ready for Cassini’s grand finale

LASP planetary scientist Larry Esposito has been eying the fabulous rings of Saturn for much of his career, beginning as a team scientist on NASA’s Pioneer 11 mission when he discovered the planet’s faint F ring in 1979.

He followed that up with observations of Jupiter’s and Saturn’s rings from the Voyager and Galileo spacecraft, which carried instruments designed and built at LASP. Now, as the principal investigator for the Ultraviolet Imaging Spectrograph (UVIS) on the Cassini-Huygens mission to Saturn, Esposito and his Cassini colleagues are feeling a bit somber as the mission nears its end. The spacecraft has run out of fuel and will disintegrate in Saturn’s dense atmosphere early on the morning of Sept. 15.

The Voyager spacecraft: 40 years in space, surreal solar system discoveries

In 1977, two NASA space probes destined to forever upend our view of the solar system launched from Cape Canaveral, Florida.

The identical spacecraft, Voyager 1 and Voyager 2, took off in in August and September 40 years ago and were programmed to pass by Jupiter and Saturn on different paths. Voyager 2 went on to visit Uranus and Neptune, completing NASA’s “Grand Tour of the Solar System,” perhaps the most exhilarating interplanetary mission ever flown.

CU Boulder scientists at LASP, who designed and built identical instruments for Voyager 1 and Voyager 2, were as stunned as anyone when the spacecraft began sending back data to Earth.

LASP scientists, students primed for Juno arrival at Jupiter

A group of LASP scientists and students are anxiously awaiting the arrival of NASA’s Juno spacecraft at Jupiter July 4, a mission expected to reveal the hidden interior of the gas giant as well as keys to how our solar system formed.

Launched in 2011, the spacecraft is slated to orbit Jupiter’s poles 37 times roughly 3,000 miles (4,828 kilometers) above its cloud tops to better understand the origin and evolution of the largest planet in the solar system. Scientists hope to determine if Jupiter has a solid core, measure the planet’s magnetic fields, hunt for water vapor and observe the polar auroras.

Three planetary scientists from LASP and five University of Colorado Boulder (CU-Boulder) students are part of the Juno mission.

PRESS RELEASE: United Arab Emirates to partner with CU-Boulder on 2021 Mars mission

A mission to study dynamic changes in the atmosphere of Mars over days and seasons led by the United Arab Emirates (UAE) involves the University of Colorado Boulder as the leading U.S. scientific-academic partner.

Known as the Emirates Mars Mission, the project is being designed to observe weather phenomena like Martian clouds and dust storms as well as changes in temperature, water vapor and other and gases throughout the layers of the atmosphere. The CU-Boulder part of the mission will be undertaken at LASP.

The mission will be headquartered at and controlled from the Mohammed bin Rashid Space Centre in Dubai, which is affiliated with the Emirates Institution for Advanced Science and Technology. According to Sheikh Mohammed bin Rashid, Vice President and Prime Minister of Dubai, the new Mars probe will be named Hope.

MAVEN spacecraft detects aurora and mysterious dust cloud around Mars

NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has observed two unexpected phenomena in the Martian atmosphere: an unexplained high-altitude dust cloud and aurora that reaches deep into the Martian atmosphere.

The presence of dust at orbital altitudes from about 93 miles (150 kilometers) to 190 miles (300 kilometers) above the surface was not predicted. Although the source and composition of the dust are unknown, there is no hazard to MAVEN and other spacecraft orbiting Mars.

CU-Boulder students to help control instruments on MMS from LASP

LASP will serve as the Science Operations Center for a NASA mission launching this month to better understand the physical processes of geomagnetic storms, solar flares and other energetic phenomena throughout the universe.

The $1.1 billion Magnetospheric Multiscale (MMS) mission will be comprised of four identical, octagonal spacecraft flying in a pyramid formation, each carrying 25 instruments. The goal is to study in detail magnetic reconnection, the primary process by which energy is transferred from the solar wind to Earth’s protective magnetic space environment known as the magnetosphere, said LASP Director Daniel Baker, Science Operations Center (SOC) lead scientist for MMS.

LASP-led Mars mission set for orbit insertion on Sept. 21

A NASA mission to Mars led by LASP is set to slide into orbit around the red planet on Sept. 21 to investigate how its climate has changed over the eons, completing a 10-month interplanetary journey of 442 million miles.

The orbit-insertion maneuver will begin with six thruster engines firing to shed some of the velocity from the spacecraft, known as the Mars Atmosphere and Volatile EvolutioN, or MAVEN mission. The thruster engines will ignite and burn for 33 minutes to slow the spacecraft, allowing it to be captured into an elliptical orbit around Mars.

As Voyager 1 nears edge of Solar System, CU scientists look back

In 1977, Jimmy Carter was sworn in as president, Elvis died, Virginia park ranger Roy Sullivan was hit by lightning a record seventh time and two NASA space probes destined to turn planetary science on its head launched from Cape Canaveral, Fla. The identical spacecraft, Voyager 1 and Voyager 2, were launched in the summer and programmed to pass by Jupiter and Saturn on different paths. Voyager 2 went on to visit Uranus and Neptune, completing the “Grand Tour of the Solar System,” perhaps the most exciting interplanetary mission ever flown. University of Colorado Boulder scientists, who designed and built identical instruments for Voyager 1 and Voyager 2, were as stunned as anyone when the spacecraft began sending back data to Earth.