Posts Tagged: Spacecraft

CU-Boulder hitches a ride to space on commercial satellite

The University of Colorado announced today that it has awarded a five-year contract to SES Government Solutions (SES GS), of Reston, Va., to host a NASA-funded science instrument on board SES-14, a communications satellite to be stationed over the Americas.

The Global-Scale Observations of the Limb and Disk (GOLD) mission, a NASA Explorers mission led from the University of Central Florida and built and operated at the University of Colorado (CU-Boulder), will collaborate with SES GS to place a science instrument on a commercial satellite as a hosted payload. This is the first time a university and a commercial spacecraft operator have teamed to host a NASA science mission. At a cost of roughly 10% of a traditional science satellite, working with a communications satellite represents the most cost-effective way to reach geostationary orbit.

MMS Prepared for Launch to Study Earth’s Dynamic Magnetic Space Environment

Final preparations are underway for the launch of NASA’s quartet of Magnetospheric Multiscale (MMS) spacecraft, which constitute the first space mission dedicated to the study of magnetic reconnection. This fundamental process occurs throughout the universe where magnetic fields connect and disconnect with an explosive release of energy.

The launch of MMS, on a United Launch Alliance Atlas V rocket, is scheduled for 8:44 p.m. MDT on Thursday, March 12 from Cape Canaveral Air Force Station, Florida.

Mars spacecraft, including MAVEN, reveal comet flyby effects on Martian atmosphere

Two NASA and one European spacecraft, including NASA’s MAVEN mission—led by LASP—have gathered new information about the basic properties of a wayward comet that buzzed by Mars Oct. 19, directly detecting its effects on the Martian atmosphere.

Data from observations carried out by MAVEN, NASA’s Mars Reconnaissance Orbiter (MRO) and the European Space Agency’s Mars Express spacecraft revealed that debris from the comet, known officially as Comet C/2013 A1 Siding Spring, caused an intense meteor shower and added a new layer of ions, or charged particles, to the ionosphere. The ionosphere is an electrically charged region in the atmosphere that reaches from about 75 miles (120 kilometers) to several hundred miles above the Martian surface.

Using the observations, scientists were able to make a direct connection between the input of debris from the meteor shower to the subsequent formation of the transient layer of ions—the first time such an event has been observed on any planet, including Earth, said the MAVEN research team.

LASP-led Mars mission set for orbit insertion on Sept. 21

A NASA mission to Mars led by LASP is set to slide into orbit around the red planet on Sept. 21 to investigate how its climate has changed over the eons, completing a 10-month interplanetary journey of 442 million miles.

The orbit-insertion maneuver will begin with six thruster engines firing to shed some of the velocity from the spacecraft, known as the Mars Atmosphere and Volatile EvolutioN, or MAVEN mission. The thruster engines will ignite and burn for 33 minutes to slow the spacecraft, allowing it to be captured into an elliptical orbit around Mars.

MAVEN on Track to Carry Out its Science Mission

The MAVEN spacecraft and all of its science instruments have completed their initial checkout, and all of them are working as expected. This means that MAVEN is on track to carry out its full science mission as originally planned.

The mission is designed to explore Mars’ upper atmosphere. It will determine the role that escape of gas from the atmosphere to space has played in changing the climate throughout the planet’s history. MAVEN was launched on November 18, 2013, and will go into orbit around Mars on the evening of Sept. 21, 2014 (10 p.m. EDT).

After a 5-week commissioning phase in orbit, during which it will get into its science-mapping orbit, deploy its booms, and do a final checkout of the science instruments, it will carry out a one-Earth-year mission. It will observe the structure and composition of the upper atmosphere, determine the rate of escape of gas to space today and the processes controlling it, and make measurements that will allow it to determine the total amount of gas lost to space over time.

MAVEN haiku selected for travel to Mars

Haiku recognized in the LASP-led MAVEN message-to-Mars contest were announced today on the Going to Mars campaign website. Haiku authors from around the world—including Palestine, India, Australia, and Europe—entered the contest. The top five winners—all those whose haiku received 1,000 votes or more—include popular British blogger Benedict Smith and well-known American poet Vanna Bonta. Other entries receiving special recognition include MAVEN team selections in categories ranging from haiku specifically about MAVEN to humorous haiku.

MAVEN arrives in Florida for launch preparations

The LASP-led Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has arrived in Florida to begin final preparations for launch this November. The spacecraft was shipped from Lockheed Martin Space Systems in Littleton, Colo., to the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center on Friday.

Kepler team wins top space program award

The NASA Kepler Mission won the highest honor for space programs at the 2012 Aviation Week Laureate Awards on March 7 in Washington, D.C. Students and professionals in the LASP Mission Operations Center control the Kepler spacecraft, which is surveying our region of the Milky Way galaxy for Earth-like planets. The Laureate Awards recognize individuals… Read more »

As Voyager 1 nears edge of Solar System, CU scientists look back

In 1977, Jimmy Carter was sworn in as president, Elvis died, Virginia park ranger Roy Sullivan was hit by lightning a record seventh time and two NASA space probes destined to turn planetary science on its head launched from Cape Canaveral, Fla. The identical spacecraft, Voyager 1 and Voyager 2, were launched in the summer and programmed to pass by Jupiter and Saturn on different paths. Voyager 2 went on to visit Uranus and Neptune, completing the “Grand Tour of the Solar System,” perhaps the most exciting interplanetary mission ever flown. University of Colorado Boulder scientists, who designed and built identical instruments for Voyager 1 and Voyager 2, were as stunned as anyone when the spacecraft began sending back data to Earth.