Posts Tagged: Tom Mason

LASP scientists ready for Cassini’s grand finale

LASP planetary scientist Larry Esposito has been eying the fabulous rings of Saturn for much of his career, beginning as a team scientist on NASA’s Pioneer 11 mission when he discovered the planet’s faint F ring in 1979.

He followed that up with observations of Jupiter’s and Saturn’s rings from the Voyager and Galileo spacecraft, which carried instruments designed and built at LASP. Now, as the principal investigator for the Ultraviolet Imaging Spectrograph (UVIS) on the Cassini-Huygens mission to Saturn, Esposito and his Cassini colleagues are feeling a bit somber as the mission nears its end. The spacecraft has run out of fuel and will disintegrate in Saturn’s dense atmosphere early on the morning of Sept. 15.

GOLD installed on commercial communications satellite

A LASP-built instrument that will provide unprecedented imaging of the Earth’s upper atmosphere has been successfully installed on the commercial satellite that will carry it into geostationary orbit some 22,000 miles above the Earth.

The Global-scale Observations of the Limb and Disk (GOLD) mission, led by the University of Central Florida (UCF) and built and operated by LASP, features a collaboration with satellite owner-operator SES Government Solutions (SES GS) to place an ultraviolet instrument as a hosted payload on a commercial satellite.

GOLD one step closer to launching into space

A NASA instrument that will study the upper atmosphere and the impact of space weather on Earth is a step closer on its journey into space.

The Global-scale Observations of the Limb and Disk (GOLD) mission, led by University of Central Florida (UCF) scientist Richard Eastes, is scheduled to launch in late 2017 from Florida. Earlier this month, the LASP-built instrument was shipped to Airbus Defence and Space in Toulouse, France, for integration on the SES-14 communications satellite, on which it will be launched into space.

Launching rockets and STEM dreams for first-generation students

Wearing latex gloves and focused expressions, a group of middle school students gathered around a large cardboard tube recently at the CU Boulder Engineering Center then carefully began wrapping it in fiberglass. All the while, an undergraduate with the CU Students for the Exploration and Development of Space (CU SEDS) organization explained how rockets are designed and built.

Soon, these same students will travel to southern Colorado to launch a rocket they helped assemble as part of a CU Junior Aerospace Engineering Camp. This camp, in particular, brought students to campus from Casa de la Esperanza, a housing community in Longmont for agricultural workers and their families.

LASP cubesat will study the sun in soft X-rays

At any given moment, our sun emits a range of light waves far more expansive than what our eyes alone can see: from visible light to extreme ultraviolet to soft and hard X-rays. Different wavelengths can have different effects at Earth and, what’s more, when observed and analyzed correctly, those wavelengths can provide scientists with information about events on the sun. In 2012 and 2013, a detector was launched on a sounding rocket for a 15 minute trip to look at a range of sunlight previously not well-observed: soft X-rays.

MAVEN spacecraft detects aurora and mysterious dust cloud around Mars

NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has observed two unexpected phenomena in the Martian atmosphere: an unexplained high-altitude dust cloud and aurora that reaches deep into the Martian atmosphere.

The presence of dust at orbital altitudes from about 93 miles (150 kilometers) to 190 miles (300 kilometers) above the surface was not predicted. Although the source and composition of the dust are unknown, there is no hazard to MAVEN and other spacecraft orbiting Mars.

LASP brings New Horizons science to rural Colorado communities

After a decade-long voyage through the solar system, NASA’s New Horizons mission is scheduled to fly by Pluto in July 2015, carrying with it the LASP-built Student Dust Counter (SDC). The New Horizons mission also involves LASP scientists and CU-Boulder students, who await data from the unprecedented approach and close encounter of the dwarf planet and its five known moons.

In preparation for the July encounter, LASP Office of Communications and Outreach staff recently traveled to two rural Colorado communities and delivered Pluto-related programming to students and their families. Accompanying them was Fran Bagenal, LASP planetary scientist, CU-Boulder professor of astrophysical and planetary sciences, and New Horizons mission co-investigator. Bagenal served as the New Horizons and Pluto science expert during the school visits and gave public presentations to both communities.

Students use Student Dust Counter data to improve understanding of space dust

Using data from the NASA New Horizons mission to Pluto, LASP scientists have made new measurements of interplanetary dust density. The data, collected from the CU-Boulder student-built Student Dust Counter (SDC) and the meteoroid detector on the Pioneer 10 spacecraft, represent measurements of the micro-sized dust grains from the Earth out to the present position of the SDC, at approximately 20 Astronomical Units (AU). One AU is equal to the average distance from the Sun to the Earth, or approximately 93 million miles (149.5 million km).