Posts Tagged: Tom Woods

MinXSS CubeSat fills critical gap in measuring the sun

A bread loaf-sized satellite, designed and built by University of Colorado students, has been collecting data since its deployment from the International Space Station on May 16 and is providing observations of the sun at unprecedented wavelengths and resolution.

The Miniature X-ray Solar Spectrometer (MinXSS)—a 30cm x 10cm x 10 cm, 3-unit satellite—is the first ever science CubeSat launched for NASA’s Science Mission Directorate and has already met its minimum mission science criteria for data and observations.

Sounding rocket EVE supports tune-up of SDO EVE instrument

Satellites provide data daily on our own planet, our sun and the universe around us. The instruments on these spacecraft are constantly bombarded with solar particles and intense light, not to mention the normal wear and tear from operating in space.

If it were a car that’s a few years old, you would take it to the mechanic for a tune-up to make sure it continues running smoothly. However, with a spacecraft it’s not that easy. Thus, scientists may turn to calibration flights to make sure the instruments are kept up to snuff and providing validated data.

One such flight will be the Extreme UltraViolet (EUV) Variability Experiment, or EVE, from the University of Colorado, Boulder, to observe the sun from a NASA Black Brant IX sounding rocket at 3:02 p.m. EDT May 25 at the White Sands Missile Range in New Mexico.

MinXSS CubeSat set to deploy from ISS, study sun’s soft X-rays

The bread loaf-sized Miniature X-Ray Solar Spectrometer (MinXSS) CubeSat will be deployed from an airlock on the International Space Station (ISS) at 4 a.m. MDT on Monday, May 16, beginning its journey into space where it will study emissions from the sun that can affect ground-based communications systems.

The NASA-funded MinXSS, designed, built, and operated by University of Colorado Boulder students and faculty at LASP and CU-Boulder’s Aerospace Engineering Sciences Department (AES), will operate in Earth’s orbit for up to 12 months. The CubeSat will be deployed from the ISS via a special deployer designed by NanoRacks, LLC.

The MinXSS will observe soft X-rays from the sun, which can disrupt Earth’s upper atmosphere and hamper radio and GPS signals traveling through the region. The intensity of the soft x-ray emissions emitted from the sun is continuously changing over a large range—with peak emission levels occurring during large eruptions on the sun called solar flares.

LASP-built MinXSS CubeSat to study solar flares, X-rays emitted by the sun

A NASA-funded miniature satellite built by LASP and University of Colorado Boulder students will launch at 5:55 p.m. EST on Thursday from Cape Canaveral, Florida, the start of a six-month-long mission to study solar flares and the powerful X-rays emitted by the sun.

The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat, which was built by students in CU-Boulder’s Department of Aerospace Engineering (AES) in collaboration with LASP researchers, will help shed light on how powerful electromagnetic emissions from the sun impact the Earth’s atmosphere, an effect known as space weather.

Using a Sounding Rocket to Help Calibrate NASA’s SDO

Watching the sun is dangerous work for a telescope. Solar instruments in space naturally degrade over time, bombarded by a constant stream of solar particles that can cause a film of material to adhere to the optics. Decades of research and engineering skill have improved protecting such optics, but one crucial solution is to regularly recalibrate the instruments to accommodate such changes.

In mid-May, the seventh calibration mission for an instrument on NASA’s Solar Dynamics Observatory, or SDO, will launch into space onboard a sounding rocket for a 15-minute flight. The instrument to be calibrated is called EVE, short for the EUV Variability Experiment, where EUV stands for extreme ultraviolet. EVE’s job is to observe the total energy output of the sun in EUV light waves. The calibration mission is scheduled to launch on May 21, 2015, on a Terrier-Black Brant suborbital sounding rocket around 3 pm EDT from White Sands Missile Range, New Mexico.

LASP cubesat will study the sun in soft X-rays

At any given moment, our sun emits a range of light waves far more expansive than what our eyes alone can see: from visible light to extreme ultraviolet to soft and hard X-rays. Different wavelengths can have different effects at Earth and, what’s more, when observed and analyzed correctly, those wavelengths can provide scientists with information about events on the sun. In 2012 and 2013, a detector was launched on a sounding rocket for a 15 minute trip to look at a range of sunlight previously not well-observed: soft X-rays.

Latest CubeSat project strengthens partnership with aerospace industry

A NASA-funded miniature satellite built by University of Colorado Boulder students to scrutinize solar flares erupting from the sun’s surface is the latest example of the university’s commitment to advancing aerospace technology and space science through strong partnerships with industry and government.

The $1 million Miniature X-ray Solar Spectrometer (MinXSS), led by CU-Boulder faculty in the Laboratory for Atmospheric and Space Physics and the Department of Aerospace Engineering Sciences, recently was selected by NASA for launch in January 2015 from the International Space Station.

PRESS RELEASE: LASP will partner on NASA mission to study Earth’s upper atmosphere

NASA has announced that LASP will collaborate on a $55 million project to build and launch an instrument to provide unprecedented imaging of the Earth’s upper atmosphere from a geostationary orbit.

The kind of information the Global-scale Observations of the Limb and Disk (GOLD) mission will collect will have a direct impact on man’s understanding of space weather and its impact on communication and navigation satellites.

LASP scientists, instrument responsible for new solar flare discovery

The Sun is the dominant source of energy for Earth’s atmosphere. Scientists are interested in determining how the Sun’s output affects Earth’s climate and the ways specific events can disrupt space weather applications, space-based technologies, and radio communications. New observations of solar extreme ultraviolet (EUV) irradiance from the LASP-designed and built EUV Variability Experiment (EVE) on NASA’s Solar Dynamics Observatory (SDO) are adding another piece to this complicated puzzle that may help scientists more accurately predict space weather events.

Low solar energy not solely behind Little Ice Age

A study published in Geophysical Research Letters and co-authored by LASP scientist Tom Woods has found that total solar irradiance (TSI)—a measure of the Sun’s energy output—may not be as low during the Little Ice Age as previously understood. Low total solar irradiance has been thought to be a cause of the Little Ice Age, a time in the 17th Century coinciding with a period of unusually low sunspot activity known as the Maunder Minimum.

PRESS RELEASE: Shrinking atmospheric layer linked to low levels of solar radiation

LASP scientist and CU professor Tom Woods contributed to a study indicating that large changes in the sun’s energy output may drive unexpectedly dramatic fluctuations in Earth’s outer atmosphere. The study, published today in Geophysical Research Letters, links a recent, temporary shrinking of a high atmospheric layer with a sharp drop in the sun’s ultraviolet… Read more »

CU-Boulder returns nearly $3 million In cost savings to NASA for design and operation of satellite

The University of Colorado at Boulder took an unusual step today by returning nearly $3 million in cost savings to NASA for an award-winning satellite mission designed, built and controlled by the university to study how the sun’s variation influences Earth’s climate and atmosphere. Known as the Solar Radiation and Climate Experiment, or SORCE, the… Read more »