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The National Science Foundation has begun funding CubeSats for space weather investigation. Many of these
missions are to measure charged particles in a highly inclined Low Earth Orbit (LEO). The charged particles
spiral around magnetic field lines as they reach LEO. Passive Magnetic Attitude Control (PMAC) aligns a
CubeSat to within ±15◦ of the Earth’s local magnetic field line throughout each orbit, maximizing particle
counts available for onboard science instrumentation. Also, given typical CubeSat mass (< 4 kg) and power
(< 6W insolated without deployable solar panels) constraints, PMAC is ideal as it performs using low mass
(< 50g) and no power. The design of a PMAC system is discussed for a 3U CubeSat, considering external
torques acting on the craft, parametric resonance, and apparent permeability of the hysteresis rod. Next, the
development of a PMAC Matlab simulation is discussed, including equations of motion, an Earth magnetic field
model, and hysteresis rod response. Key steps are outlined with sufficient detail to recreate the simulation.
Finally, the simulation is used to verify the PMAC system onboard the NSF-funded Colorado Student Space
Weather Experiment (CSSWE).

Introduction

SOLUTIONS for satellite attitude control must be
weighed by trade of resources vs. performance.

CubeSats are a unique form factor varing from one (1U)
to three (3U) stacked cubes of dimensions 10 × 10 × 10
cm. For these small satellites, Passive Magnetic Attitude
Control (PMAC) is a robust attitude solution particu-
larly useful for space weather investigation. PMAC is
composed of a bar magnet to supply restoring torque
and a hysteresis rod to supply dampening torque. As a
passive system, PMAC draws no system power and, for
microsatellites and smaller, uses less than 50 grams of
mass. The concept was space-tested in 1960 on Transit-
1B, and has been used moderately since then. PMAC is
sometimes not a desirable solution because its pointing
is typically limited to oscillations ±15◦ about the local
magnetic field.1 However, when a mission has low re-
source availability and benefits from alignment with the
Earth magnetic field, PMAC is a wise solution.

The National Science Foundation began funding
CubeSats for space weather investigation in 2008 with
Michigan’s RAX CubeSat. The Michigan team chose
PMAC for their CubeSat, and have developed an air-
bearing testbed in lieu of modeling the system behavior.2

The University of Colorado’s Colorado Student Space
Weather Experiment (CSSWE) has also chosen a PMAC
system. Its mission involves sensing high-energy charged

Figure 1. CSSWE Magnetic Components.

particles which spiral around magnetic field lines. Align-
ing with the local magnetic field maximizes the particles
available for the CSSWE science instrument: the Rela-
tivistic Electron Particle Telescope integrated little ex-
periment (REPTile).3 All calculations and simulations
assume a 600 km, 55◦ inclination orbit, required to reach
these high-energy particles. The attitude control system
of CSSWE has two performance requirements:

1. The attitude control system shall have a settling
time of less than 7 days.

2. Once settled, the CubeSat shall stay within ±15◦ of
the local magnetic field lines.

The ability to meet these requirements is entirely depen-
dent on the PMAC system design; the requirements are
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Table 1. 3U CubeSat Environmental Torques∗

Torque Value
[N·m]

Aerodynamic 8E − 8
Gravity Gradient 6E − 8
Radiometric 1E − 8
RMS Sum 1E − 7

∗Assuming 600 km orbit

validated by a Matlab model. Figure 1 shows CSSWE
with magnetic components highlighted in red.

There are two sources of error in effect when using a
PMAC system. The first is steady state error, in which
the hysteresis rod magnetic moment causes the total
magnetic moment to be misaligned with the long axis
of the spacecraft, decreasing pointing accuracy. Because
the hysteresis rod polarity switches, this effect cannot
be canceled using a particular hysteresis rod orientation.
Steady state error becomes noticeable when the torque
supplied by the bar magnet is on par with the hysteresis
rod torque (when the angle between the CubeSat long
axis and the local magnetic field is small). The sec-
ond, oscillatory error, occurs because the magnetic field
changes as the spacecraft travels, causing a delay before
alignment with the current field.4 The oscillatory er-
ror is directly related to the PMAC settling time, which
may be of critical importance for a short mission dura-
tion. As hysteresis material is increased, the oscillatory
error and settling time decrease at the cost of increased
steady-state error, while decreasing the material has the
opposite effect. A good PMAC system design will find
the balance between these two errors when determining
the hysteresis material needed for a given bar magnet
strength.

PMAC System Design
A successful attitude system design begins with an

analysis of external torques experienced by the space-
craft. Table 1 shows the torques experienced by a 3U
CubeSat at 600 km. The torque supplied by a magnetic
moment in a magnetic field is quite simple:

~T = ~m× ~B. (1)

where ~B is the magnetic flux density vector and ~m is
the magnetic moment vector for the bar magnet, though
this equation is valid for the torque from a hysteresis
rod magnetic moment as well. At 600 km, | ~B| varies
from 0.20− 0.45 Gauss. The author presents a modified
version of Santoni and Zelli’s recommended bar magnet

strength for the UNISAT-4 student satellite:5

m ≥ 10
TRMS

Bmin · sin(βmax)
(2)

where TRMS is the root means squared sum of indepen-
dent environmental torques, Bmin is the minimum field
strength at 600 km (2.0E − 5 Tesla), and βmax is the
desired pointing accuracy (10◦).

Bar Magnet Design

The bar magnet design is concerned with finding a
suitable bar magnet magnetic moment. Equation 2 has
been modified from Santoni and Zelli5 to decrease the
strength of the bar magnet, thus decreasing the required
hysteresis material within the volume-limited CubeSat.
This equation gives CSSWE the minimum m = 0.29
A·m2.

A second constraint on the chosen bar magnet
strength is parametric resonance, which can occur for
polar orbits. The magnetic moments which resonate are
given by the following system of equations:

η ∼= 2.63k2 − 0.49 + 0.51
Ixx
Iyy

(3)

η⊥ ∼= 2.63k2 − 4.25 + 1.25
Ixx
Iyy

(4)

mRES =
Iyy · n20 · η

Beq
(5)

mRES,⊥ =
Iyy · n20 · η⊥

Beq
(6)

where k is an integer, Ixx is the minor axis moment of
inertia, Iyy is the major axis moment of inertia, n0 is
the orbit mean motion, and Beq is the magnetic flux
density at the equator. Note Equations 5 and 6 are cor-
rected from Santoni and Zelli.5 For CSSWE and most
CubeSats, Iyy ∼= Izz; mRES and mRES,⊥ should be re-
calculated for Izz if Iyy 6= Izz. Table 2 shows resonating
magnetic moments for CSSWE surrounding the thresh-
old set by Equation 2. This table assumes Beq = 2.3E−5
Tesla, Ixx = 3.6E − 3 kg·m2, Iyy = 1.7E − 2 kg·m2, and
600 km orbit altitude. Considering the minimum value
for m set by Equation 2 and the resonating values shown
in Table 2, CSSWE has chosen m = 0.3 A·m2.

Hysteresis Rod Design

Once a bar magnet magnetic moment has been chosen,
the hysteresis rod dimensions and quantity should be de-
termined. Typically, hysteresis rods are mounted in pairs
orthogonal to the bar magnet to maximize dampening
per rod. Thus, we set the bar magnet in alignment with
the long axis (X-axis) of the CubeSat, and place hys-
teresis rods in alignment with both short axes (Y and Z
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Table 2. CSSWE Parametric Resonances

k η η⊥ mRES mRES,⊥
[A·m2] [A·m2]

10 262.62 259.01 0.228 0.225
11 317.85 314.24 0.277 0.273
12 378.34 374.73 0.329 0.326
13 444.09 440.48 0.386 0.383
14 515.10 511.49 0.448 0.445
15 591.37 587.76 0.514 0.511

axes). The rods supply dampening by shifting polarities
in delayed response to the magnetic field changes, con-
verting rotational energy into heat. A hysteresis loop
describes the rod’s induced magnetic flux density for
a given magnetic field strength, and is generally char-
acterized by three magnetic hysteresis parameters: the
coercive force Hc, the remanence Br, and the satura-
tion induction Bs, shown in Figure 2. These parameters
are important in describing the shape of the hysteresis
loop, the area of which determines the dampening per cy-
cle per unit volume. However, the magnetic parameters
vary with rod length to diameter L/D ratio, material,
and external field strength. The dimensions and num-
ber of rods are set in response to the estimated magnetic
hysteresis parameters.

There are a number of ways to estimate the magnetic
hysteresis parameters: Levesque uses true permeability
rated material numbers regardless of rod dimensions,4

Santoni and Zelli estimate the apparent permeability of
the rod based on dimensions and applied field parame-
ter values,5 while Flatley and Henretty use empirically-
determined values for a specific rod.6 While empirical
calculations are ideal, the design of a testing apparatus
is beyond the scope of this paper. Instead, the author
outlines a process to estimate the apparent hysteresis rod
parameters. To begin, the magnetic moment supplied by
a hysteresis rod is given by:

mhyst =
Bhyst · Vhyst

µ0
(7)

where mhyst is the magnetic moment of the hysteresis
rod aligned with its long axis, Bhyst is the magnetic flux
induced in the rod, Vhyst is the volume of the rod, and µ0

is the permeability of free space.6 The induced magnetic
flux is broken down to:

Bhyst = µ0µ
′
hystH (8)

where H is the magnetic field strength and µ′hyst is
the apparent relative permeability of the rod. Because
the hysteresis rod is ferromagnetic material, µ′hyst varies

Figure 2. Hysteresis loop diagram

with H and Bhyst and is non-linear,5 as shown in Fig-
ure 2. The apparent permeability may be defined as:

µ′hyst =
µhyst(H)

1 +Nµhyst(H)
(9)

where N is the demagnetizing factor of the rod and µhyst
is the true relative permeability of the rod which varies
with H.5 Note that µhyst is always greater than µ′hyst,
and the discrepancy between the two grows with N . The
demagnetization factor for the long axis of a cylinder is
given by:7

N =

[(
L

D

)
4√
π

+ 2

]−1
. (10)

Clearly, the hysteresis rod L/D ratio affects the value
of N , and thus the efficiency of the rod. We combine
Equations 8 - 10 to estimate the expected hysteresis rod
apparent saturation induction:

B′s = µ0µ
′
hystHs = µ0

 µhyst(Hs)

1 + µhyst(Hs)
((

L
D

)
4√
π

+ 2
)−1

Hs

(11)

where Hs is the magnetic field strength at saturation (H
when B = Bs). Typical values of L/D are ∼ 100−300,1

and CubeSat interior dimensions set an upper limit so
L ≤ 9.5 cm. Recognizing this, we use L/D = 95 and
find D = 1 mm (for ease of manufacturing). The chosen
hysteresis rod material (HyMu-80) has a material satu-
ration field strength Hs = 100 A/m.5 Using this Hs and
Figure 3, we find µhyst(Hs) = 1.5E + 4. Using Equa-
tion 11 with these values estimates B′s = 0.0268 Tesla.
However, H ′c and B′r cannot be calculated the same way,
so we instead estimate their values equivalent to those
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Figure 3. Hysteresis rod true permeability8

Table 3. Hysteresis Rod Comparison

Property UNISAT-45 CSSWE

Rod Length [cm] 15 9.5
Rod Diameter [mm] 1 1
Material HyMu-80 HyMu-80
Material Hc [A/m]8 0.96 0.96
Material Br [Tesla]4 0.35 0.35
Material Bs [Tesla]8 0.74 0.74
Apparent H ′c [A/m] 12 12∗

Apparent B′r [Tesla] 0.004 0.004∗

Apparent B′s [Tesla] 0.025 0.027∗∗

∗Estimated value ∗∗Calculated value

empirically derived from a similar rod.5 This assump-
tion is valid because the calculated H ′s is very close to
the UNISAT-4 value. Table 3 compares the hysteresis
rod properties of UNISAT-4 and CSSWE. Note that the
values of Hc and Br are estimated values and should
be empirically tested before completing the design of
a PMAC system. Now that the physical properties of
each rod have now been estimated, an attitude simula-
tion is developed to determine the number of rods per
axis needed to satisfy the pointing requirements.

Matlab Attitude Simulation
The attitude simulation begins with a choice of at-

titude coordinates. The author has chosen 3-2-1 Euler
angles; this attitude coordinate set results in the follow-
ing kinematic differential equation of motion: θ̇1

θ̇2
θ̇3

 =
1

cθ2

 0 sθ3 cθ3
0 cθ3cθ2 −sθ3cθ2
cθ2 sθ3sθ2 cθ3sθ2

 ωx
ωy
ωz


(12)

where θ1, θ2, θ3 are the Euler angles , θ̇1, θ̇2, θ̇3 are the
Euler angle rates and ωx, ωy, ωz are the body-fixed an-
gular velocities of the X Y Z axes respectively. Also note
that cθ is cos θ and sθ is sin θ. Now we assume a body
frame aligned with the principal axes of the CubeSat
(constant diagonal mass matrix) and use Euler’s sep-
arated rotational equations of motion to complete the
equation set:

Ixxω̇x = −(Izz − Iyy)ωyωz + Lx (13)

Iyyω̇y = −(Ixx − Izz)ωzωx + Ly (14)

Izzω̇z = −(Iyy − Ixx)ωxωy + Lz (15)

where Ixx, Iyy, Izz are the mass moment of inertias of
the principal axes which align with the body fixed X Y
Z axes respectively, ω̇x, ω̇y, ω̇z are the body fixed angu-
lar accelerations for the X Y Z axes respectively, and
Lx, Ly, Lz are the external torques on the X Y Z axes
respectively.9 With the equations of motion are defined,
we investigate the external torques acting on the Cube-
Sat.

External Torque: Bar Magnet

While the bar magnet torque is simply given by Equa-
tion 1, the value of ~B varies with both orbit location, and
the current attitude configuration. Keep in mind that ~B
is the magnetic field experienced by the bar magnet and
must be examined in a body-fixed frame. The simula-
tion has two frames: body-fixed and the Earth Centered
Earth Fixed (ECEF) inertial frame. The Direction Co-
sine Matrix (DCM) which allows rotation from inertial
to body-fixed frame for 3-2-1 Euler angles is given below: cθ2cθ1 cθ2sθ1 −sθ2

sθ3sθ2cθ1 − cθ3sθ1 sθ3sθ2sθ1 + cθ3cθ1 sθ3cθ2
cθ3sθ2cθ1 + sθ3sθ1 cθ3sθ2sθ1 − sθ3cθ1 cθ3cθ2


(16)

The DCM is defined as
{b̂} = [C(θ1, θ2, θ3)]{n̂} where {b̂} is the body-frame
vector, [C(θ1, θ2, θ3)] is the DCM, and {n̂} is the inertial
frame vector.9 We now have the tools to use a model
of the Earth’s magnetic field strength in the simulation.
Rauschenbakh et al. define the following dipole model
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Figure 4. Modeled Apparent Hysteresis Loop

in ECEF frame:

H1 = 3Heq sin i cos i sin2 u (17)

H2 = −3Heq sin i sinu cosu (18)

H3 = Heq(1− 3 sin2 i sin2 u) (19)

where Heq is the equatorial magnetic field strength mag-
nitude at 600 km (18.3 A/m), i is the orbit inclination
(55◦), u is the argument of latitude, and H1, H2, H3 is
the magnetic field strength in the ECEF direction vec-
tors 1,2,3 respectively.10 An argument of latitude value
is linked to each timestep, simulating the CubeSat mo-
tion through each orbit. At each timestep the DCM is
used to determine the magnetic field seen by the Cube-
Sat, which is then used to determine the external torque
due to the bar magnet.

External Torque: Hysteresis Rods

Simulating the hysteresis response begins by devel-
oping a hysteresis loop model. Flatley and Henretty
develop the following model:6

p =
1

Hc
tan

(
πBr
2Bs

)
(20)

Bhyst =
2

π
Bs tan−1

[
p(H ±Hc)

]
(21)

where p is a constant for a given set of magnetic hystere-
sis parameters and H is the component of the magnetic
field strength aligned with the hysteresis rod. Notice the
±Hc term of Equation 21. A value of +Hc is used when
dH/dt < 0 and −Hc is used when dH/dt > 0. This term
is essential in defining the delay of the hysteresis loop,
though it does create a headache when coding the model
in an ODE solver such as Matlab’s ode45. Because the
angular position of the rod defines the component of the
magnetic field aligned with the rod, the previous value of

H as seen by the rod must be available at each timestep
to define dH/dt. However, the previous time need not
be saved as only the threshold of dH/dt above or below
zero matters for this model.

This model ensures that Hc and Br cross the X and
Y axes as shown in Figure 2. The material hysteresis
parameters in Equations 20 and 21 may be interchanged
for the apparent hysteresis parameters to simulate non-
ideal, realistic rods. Figure 4 shows the hysteresis loop
generated by using the apparent parameters in Table 3
with the models for Earth magnetic field and hystere-
sis developed thus far. The hysteresis loop is cut off
because the maximum variation of the Earth magnetic
field strength component is ±25.8 A/m at 600 km; the
Earth magnetic forcing is not large enough to induce B′s.
Note an ideal assumption associated with this model: we
use only one hysteresis loop to model the hysteresis re-
sponse. In reality, a different hysteresis loop is generated
for each field strength cycle range. If empirical data for
various field strength loops are available, the hysteresis
response for multiple field strength ranges may be sim-
ulated.6

Matlab ODE Solver Pitfalls

Through a series of unfortunate events, the author has
discovered a few pitfalls associated with built-in Matlab
ODE numerical solvers. The first of these pitfalls is to
assume the absolute and relative tolerances may be set
to default values 1E−6 and 1E−3 respectively. To test
this, we developed a simplified two-dimensional model to
simulate the basic dynamics, using the Hysteresis Model
shown above to simulate one hysteresis rod in a constant
magnetic field. This model was given an initial rotation
rate and run using Matlab’s ode45 numeric integrator.
Figure 5 shows the behavior of the model for varying
values of relative and absolute tolerance. The dynamic
response for each Matlab ODE solver converges at a tol-
erance of 1E − 7; this value is used for all subsequent
Matlab ODE solver inputs.

The second pitfall is to assume all Matlab solvers be-
have equally. Figure 6 shows the results from the same
two-dimensional model, this time run with different Mat-
lab ODE solvers (tolerance: 1E − 7). The results show
that the slope of the angular velocity envelope, directly
correlated with the settling time of the simulation, varies
by solver. However, the author has chosen to use the
ode45 solver due to its known robustness.

Simulation Results
The input assumptions for the Matlab PMAC simula-

tion are shown in Tables 3 (apparent values) and 4. The
first model run simulates one hysteresis rod on the Y and
Z axes. The angular velocity decay over time is shown in
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Figure 5. Matlab Tolerance Effect

Figure 6. Matlab Solver Effect

Table 4. CSSWE Input Assumptions

Input Value

Rods per axis Y Z 2
(θ10, θ20, θ30), [◦] (0,0,0)
(ωx0, ωy0, ωz0), [◦/sec] (10,5,5)
Ixx [kg·m2] 0.00551
Iyy [kg·m2] 0.02552
Izz [kg·m2] 0.02565
Relative Tolerance 1E − 7
Absolute Tolerance 1E − 7

Figure 7. Angular Velocity, 1 Rod / Axis

Figure 8. Beta, 1 Rod / Axis

Figure 7. Figure 8 shows the angle β, the angle between
the CubeSat long axis and the local magnetic field, vs.
time. Clearly, there is not enough dampening material to
meet the required 7 day settling time. Next, the simula-
tion is run adding another rod on the Y and Z axes. The
angular velocity decay with two rods per axis is shown
in Figure 9. Figure 10 shows that the settling time re-
quirement of 7 days is met, while the zoomed 11 shows β
within the ±15◦ requirement. However, Figure 11 must
be viewed with equation 2 in mind. Because the PMAC
system was designed for βmax = 10◦, at β < 10◦, the
magnetic torques enter the domain of the environmental
torques shown in Table 1, where they will disturb the
attitude of the CubeSat. The total estimated mass of
the 4 hysteresis rods8 + bar magnet is 8.6 grams (not
including mounting structure).
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Figure 9. Angular Velocity, 2 Rod / Axis

Figure 10. Beta, 2 Rod / Axis

Figure 11. Beta, 2 Rod / Axis, Zoomed

Conclusion
We describe the Passive Magnetic Attitude Con-

trol (PMAC) system for the Colorado Student Space
Weather Experiment (CSSWE) CubeSat. PMAC is a
wise choice for the mission due to its ability to align the
CubeSat within ±15◦ of the Earth’s magnetic field at a
cost of 8.6 grams and no power. This aligns the science
instrument for a maximized signal. The design is com-
pleted by first considering the bar magnet strength, then
setting a hysteresis volume in response. After consider-
ing the environmental torques on the CubeSat and the
possibility of parametric resonance, the magnetic mo-
ment of the bar magnet is chosen at 0.3 A·m2. Next,
the hysteresis response is considered by estimating the
parameters which define the material hysteresis loop for
specific rod dimensions and magnetic field strength. The
chosen hysteresis rod dimensions are 1mm diameter×9.5
cm length.

The attitude simulation is described in terms of the
chosen 3-2-1 Euler angle attitude coordinates and the
kinematic differential equations of motion. The Euler
rotational equations of motion complete the differential
equation set needed to simulate the CubeSat attitude.
Next, the external torques inputs of these equations are
considered. The bar magnet external torque is defined
by both the orientation of the spacecraft and a chosen
dipole model of Earth’s magnetic field. The hysteresis
rod torque is dependent on the previous and current time
step magnetic fields, which are used to determine the in-
duced magnetism in the rod. With the simulation fully
described, two pitfalls of Matlab ODE solvers are dis-
cussed: choice of absolute and relative tolerance (1E-7),
and choice of ODE solver (ode45).

Next, the simulation results are presented. One rod
per axis is dismissed because it does not meet the set
PMAC requirements. Two rods per axis are chosen
based on the model results, which show that the CSSWE
PMAC is sufficient to bring the CubeSat to within ±10◦

of the local magnetic field lines. Although the CSSWE
design is outlined, this paper can be used to design the
PMAC system for any spacecraft. PMAC is useful when
the mission is benefited by loose alignment with the local
magnetic field and mission budgets are tight. As shown,
the dynamics can be sufficiently simulated to validate
the design of a PMAC system.
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