

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission

MAVEN Science Community Workshop December 2, 2012 Particles and Fields Package Solar Energetic Particle Instrument (SEP) Davin Larson and the SEP Team

Overview of SEP events

- SEPs: Solar Energetic Particles are ions or electrons of solar or interplanetary origin from ~10 keV to ~1000 MeV (i.e. suprathermal solar wind tail up to GCRs).
- Primary acceleration mechanisms to produce SEPs:
 - Solar flares, causing impulsive events (hours)
 - CME shocks, CIRs, causing gradual events gradual events (days) Reames 1999, Space Sci. Revs. 90, 413 CME Shocks

Flares

00000 Reames, 1999

ESA

The largest SEP Events often include a prompt increase in MeV proton fluxes 10s of minutes after the related solar activity, and a second increase arriving with the associated interplanetary shock.

MAVEN Community Workshop December 2, 2012

SEP Energy Spectra

- Smaller SEP event spectra can be fitted with power laws of 2-3 for each ion species (e.g. Reames et al., 1997).
- Large gradual events have much harder spectra with exponential rollover at high energies (Tylka et al., 2000).

SEP instrument will measure particles that penetrate to altitudes important for escape processes.

- The bulk of SEP event total energy is generally below 50 keV, deposited mostly between 100 km and 130 km [LeBlanc et al., 2002], though events widely vary.
- We will measure particles that penetrate to 50 km-150 km, providing important constraints on modeling of atmosphere/ionosphere dynamics.
- Energy is partitioned into heating, sputtering, molecular dissociation, ionization, electronic excitation, nuclear excitation and neutron capture.

MAVEN Community Workshop December 2, 2012

MAVEN's goals w.r.t. SEP events

- 1) Build up statistics of total escape rates for different sizes of SEP events with different energy spectra, field-line anisotropies and IMF orientations (i.e. blackbox input versus output).
- 2) Validate models with measurements in all regions, inside and outside of the atmosphere.
- 3) Extrapolate backwards in time using validated models applied to ancient atmosphere composition and best-guess SEP event strength and frequency over time to put firm constraints on Mars' total integrated atmospheric loss to such events.

SEP instrument overview

• The Solar Energetic Particle (SEP) instrument measures the energy spectrum and angular distribution of solar energetic electrons (25 keV–1 MeV) and ions (25 keV-12 MeV).

Basic separation strategy: 3 detectors, 2 filters

Energy ranges for counted events **Electrons** lons Si detectors FTO Open side Foil side Open side Foil side Open side Foil side keV electrons No ions <20 <350 <250 <25 count Sm-Co Magnet F 20-700 Х 250-6000 Х FT 6000-Х Х 350-1300 11,000 0 Kapton Foil Х Х 350-700 25-6000 OT 6000-Х 350-1300 Х 11,000 **FTO** >600 >11,000

Mechanical Overview of SEP

- 1. Detector Stack
- 2. Foil Location
- 3. DFE Board
- 4. Magnet
 - Assembly
- 5. Attenuator
- 6. Collimator

Sensor Units – Summary of last few slides

- Each sensor unit is a:
 - Dual double-ended solid state telescope
 - Each double-ended telescope (1/2 sensor) has:
 - Triplet stack of silicon solid state detectors
 - Foil (on one side)
 - Filters out ions <~350 keV
 - Leaves electron flux > ~20 keV nearly unchanged
 - Magnet / Open side
 - Filters out electrons <350 keV
 - Leaves ion flux nearly unchanged
 - Mechanical Pinhole attenuator
 - Protects against against overheating when Sun is in FOV.
 - Reduces count rate during periods of high flux
 - Reduces radiation damage (caused by low energy ions) during periods of high flux
 - Collimators
 - Preamplifier / shaping electronics

SEP Detector Front End

Electronics Block Diagram

• Signal chain: 1 of 6 channels shown

SEP & PFP Block Diagram

MAVEN SEP Status – near future schedule

- Environments and Calibration Complete
- Instrument Delivered to Lockheed-Martin

- Initial (post transport) bench test functional was successful
- Integration begins 12/3/2012
- First spacecraft electrical tests scheduled for 12/8/2012

Instrument Capabilities Fit to Noise Spectrum

SEP Ion Response

SEP Electron Response

.

٠

SEP Instrument Data Products

- SEP has one mode-
 - Differential Energy Flux Spectra for
 - Electrons
 - 20 keV 1 MeV
 - Ions (no mass discrimination)
 - 20 keV 10 MeV
 - Each species has 4 look directions approximately:
 - Parker spiral
 - Anti parker spiral
 - ~90deg to parker spiral
 - ~90deg to parker spiral
- Three different time resolutions based on altitude:
 - 32 sec
 - 8 sec
 - 2 sec (several measurements per scale height)
- Energy Bins are configurable (still subject to change)
 - 1.5 keV width
 - 256 bins/sensor shared between all channels

• End of presentation