Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability

The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability.

The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability.

The Mars upper atmosphere—the top ~100 to 500 km encompassing the thermosphere, ionosphere, and lower portion of the exosphere—constitutes the reservoir that regulates present-day escape processes from the planet. Understanding the coupling of the lower to upper atmosphere is essential to characterizing energy deposition and upward flow of material that can ultimately result in neutral and ion escape from the planet (1). In principle, it is possible to constrain the short-term (current) atmospheric escape rates making use of the Mars Atmosphere and Volatile Evolution (MAVEN) measurements over this reservoir region and at higher altitudes. However, without knowledge of the physics and chemistry operating in this reservoir region and driving its variations (such as solar cycle, seasonal, and diurnal), it is not possible to reliably extrapolate the results over evolutionary history. The characterization of this upper atmosphere reservoir is therefore one of the major science objectives of the MAVEN mission (2).

Here, we present measurements of subsolar neutral atmospheric composition and temperature, together with ionospheric charged-particle and magnetic-field structure, extending from near the homopause to above the exobase, as enabled by MAVEN’s “Deep Dip” campaigns. During each week-long campaign, periaxis is lowered from a nominal altitude of ~150 to 170 km to ~120 to 135 km in order to reach a peak mass density of ~2 to 3.5 kg/km³. This strategy allows for detailed in situ sampling of the entire reservoir region for atmospheric escape, from the exosphere down to near the homopause (3). During each orbit, MAVEN makes in situ measurements along the elliptical orbit track of neutral and thermal ion species, thermal electrons, magnetic fields, and suprathermal electrons and ions, using a suite of science instruments (4). Periaxis migrates around the planet during the course of the mission, providing comprehensive coverage of latitude and local time, and deep dips are dispersed in time in order to sample different regions of interest (5). We focused on the second campaign (DD2), spanning 17 to 22 April 2015, which provided sampling near the subsolar region (local time = 12 to 13), late in the martian year (Ls ~ 327 to 330), and near the equator (6). Measurements of the subsolar region are important for constraining neutral-ion chemistry and dynamics in numerical simulations that estimate both neutral and ion escape rates. In addition, thermosphere-ionosphere structure and neutral temperatures are believed to be controlled in part by the changing solar extreme ultraviolet-ultraviolet (EUV-UV) fluxes; this forcing is greatest at low solar zenith angles (SZAs).

We present two sequential DD2 orbits (O1085 and O1086, on 22 April 2015), the first focusing on charged-particle and field measurements and the second on neutral composition and temperatures (Fig. 1). The thermal ion and neutral measurements were made with NGIMS on alternating orbits, necessitating the emphasis on two sequential orbit passes. Both of these orbits had periapses in a region with moderate crustal magnetic fields and occurred during nominal upstream solar wind conditions. We also examined the full suite of DD2 orbits for orbit-to-orbit neutral density and temperature variability.

Neutral composition and temperature observations

The martian upper atmosphere between the exosphere and the homopause encompasses the region of changing importance of heterogeneous (diffusive separation) and homogeneous (small-scale mixing) processes that control the density structure, the location of the peak solar EUV energy deposition, and the main reservoir for escaping particles (7). During nominal orbits, MAVEN does not reach the well-mixed atmosphere, but during the Deep Dip campaigns, MAVEN instruments can sample the column extending from near the homopause upward into the exosphere, where neutral and ion escape can occur. During the DD2 campaign, MAVEN successfully made measurements of the structure and variability of this critical altitude range in the subsolar region. Previously, the thermospheric neutral composition had only been directly measured in situ with the Upper Atmosphere Mass Spectrometer (UAMS) instruments onboard the descending Viking Landers 1 and 2 (7). These two descent profiles provided measurements for...
SZA near 44° at low-to-middle latitude for two afternoon locations during solar minimum and near aphelion conditions. The total mass density of the Mars thermosphere has also been measured by several spacecraft accelerometers (5, 8, 9).

The MAVEN NGIMS instrument measures the neutral composition of the major gas species (such as He, N, O, CO, N$_2$, O$_2$, NO, Ar, and CO$_2$) and their major isotopes, with a vertical resolution of ~5 km for targeted species and a target accuracy of <25% for most of these species (10). Corresponding temperatures can be derived from the neutral-scale heights. These multispecies measurements are obtained along an orbit trajectory that combines both vertical and horizontal variations of the upper atmosphere structure (1). These convolved variations cannot be separated without the use of numerical models.

Four key neutral species are presented (CO$_2$, Ar, N$_2$, and O) for the inbound leg (Fig. 2). The NGIMS and Mars Global Ionosphere-Thermosphere Model (M-GITM)—simulated CO$_2$, N$_2$, and Ar density profiles match reasonably well throughout the altitude range (supplementary text S1) (9). For example, in the range of 160 to 220 km, M-GITM diurnal variations of CO$_2$ encompass NGIMS densities quite well, whereas below 160 km, M-GITM underestimates NGIMS CO$_2$ densities (up to a factor of ~2 at 130 km). Both models and observations show an exponential variation of density with altitude. The scale heights of these species are different at higher altitudes, with most of them (CO$_2$, Ar, and N$_2$) showing a common scale height as 130 km is approached. This is consistent with a homopause near 130 km, but quantitative confirmation of the precise homopause altitude cannot be seen in this figure. Atomic O scale heights do not follow this pattern of transitioning scale heights because local chemical production and loss processes are important (3). These multispecies, subsolar, neutral-atmosphere measurements capture near-homopause (~130 km) to exosphere (above ~200 km) structure together on the same orbit.

The atomic O density profiles from NGIMS (Fig. 2) constrain the ion-neutral chemistry, thermal heat budget, and dynamics of the Mars dayside upper atmosphere (1). NGIMS-measured O densities have been corrected for (i) open-source neutral beaming (OSNB) retrieval, (ii) contributions from CO$_2$ at lower altitudes, and (iii) “pile up” RAM direction enhancement of densities when approaching periapsis altitudes, with largest corrections present for the higher densities during Deep Dip orbits. Atomic O densities are determined to be reliable (within the ~25% error) down to ~150 km. Comparison of measured and simulated DD2 atomic O profiles shows reasonable agreement at all altitudes, with densities at ~200 km close to -5.0×10^9 to 6.0×10^9 cm$^{-3}$. These NGIMS-measured O densities are nearly a factor of ~5 larger than corresponding Mars Express (MEx)/Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) estimates derived via remote sensing (11). The differences in the seasonal (equinox versus aphelion) and solar cycle (solar moderate versus minimum)
sampling between these two data sets may be responsible for this factor of ~5 variation. This substantial variation in atomic O densities at 200 km may have important implications for mass loading of the solar wind because thermospheric and exospheric O densities are simulated to respond similarly to solar cycle and seasonal changes (22).

The O/CO2 ratio is expected to vary with the changing solar EUV-UV fluxes reaching Mars (affecting CO2 photolysis rates) and the ability of the thermospheric circulation to transport atomic O around the planet (1). A data-model comparison shows that the altitude at which this ratio is unity occurs around ~225 km for both NGIMS and M-GITM profiles near the subsolar region (Fig. 3A). This profile determines that the O abundance becomes important above 225 km in the Mars exosphere. This cold O constraint is important for making proper calculations of hot O escape (1). Similarly, this O/CO2 ratio near 150 km (about ~20 km above the expected primary ion peak) is measured to be ~4.0% and is consistent with the NGIMS-measured O1086/O1084 ratio of ~6.0 at the same altitude. This occurs because this ion ratio is directly controlled by the atomic O abundance (13).

As the measured N2 and CO2 profiles approach ~130 km, the N2/CO2 ratio converges on the bulk atmosphere value of ~2.0% (Fig. 3B), recently measured by the Mars Science Laboratory (MSL) Sample Analysis at Mars Suite (SAMS) instrument (14). The decrease of the ratio with decreasing height is expected because the N2 scale height is larger than that for CO2. The convergence of this NGIMS N2/CO2 ratio to the constant value of ~2.0% near 130 km indicates that the N2 homopause altitude during this orbit is located at ~130 km. In fact, all species are subject to the same small-scale mixing, but each has a slightly different homopause altitude owing to small variations in molecular diffusion coefficients (15).

By this same method, the simulated M-GITM N2/CO2 ratio places the N2 homopause at ~120 km altitude. The difference between these two homopause altitudes implies that some refinement of the small-scale mixing (eddy diffusion) is needed in the M-GITM code (supplementary text S1) (9). This model adjustment is expected because the homopause model is very sensitive to small-scale mixing, which is itself poorly constrained other than by these new MAVEN measurements. In addition, M-GITM assumes the Viking mixed-atmosphere value of the N2/CO2 ratio (~2.7%) (7), which is larger than measured by SAMS (14). These NGIMS density profiles provide an important initial determination of the dayside homopause altitude, which was previously estimated from Viking modeling studies to be located between ~120 and 130 km (7).

Derived NGIMS and simulated M-GITM average temperature profiles (over the entire DD2 campaign) each include averaging over longitude and various wave features (Fig. 4). These averaged NGIMS temperature profiles are constructed by using the Snowden method with hydrostatic integration over the DD2 averaged Ar and N2 density profiles (15). Such averaging serves to smooth out much of the wave structure and determines that the upper-boundary temperature gradients should be close to zero (isothermal).

For M-GITM, simulated temperatures are extracted along each orbit trajectory and subsequently averaged together over all DD2 orbits. The
observed large vertical temperature gradient over ~140 to 170 km coincides with the peak layer of EUV heating, whereas the topside temperatures approach isothermal values above ~200 km. In particular, exospheric temperatures (T_exo) are separately extracted from Ar densities by averaging temperatures over ~200 to 250 km for each orbit, then averaging all orbit values together. CO₂ densities could also be used, yielding similar values.

Temperatures over ~200 to 250 km for each orbit, measured O densities at 200 km ranging from 2 × 10^6 to 4 × 10^6 cm⁻³. CO₂ densities vary from ~1.3 × 10^8 to ~3.5 × 10^8 cm⁻³. The O/CO₂ ratio crosses through unity varies from ~225 to 238 km. The altitude at which the O/CO₂ ratio is unity. These altitudes range from ~225 to 238 km. The mean height is 230.5 ± 2.5 km.

Charged-particle and magnetic-field observations

Plasma measurements extending from the magnetosphere down to the main peak of the sub-solar martian ionosphere have been collected by MAVEN. MGS and MEx previously explored the induced magnetosphere and the transition to the upper ionosphere (22, 23), but neither mission carried a complete complement of plasma instrumentation. Meanwhile, characterization of the lower-altitude collisional ionosphere has primarily used remote sounding techniques (24, 25), revealing variable structure (26) and only occasionally a Venus-like ionopause (27). Viking provided the only previous direct measurements of lower ionospheric structure and composition (13), but only in a narrow range of SZA.

Measurements from MAG (28), SWEA (2), SWIA (29), LPW (30), and NGIMS (10) reveal the complex morphology of the inner magnetosphere and ionosphere (Figs. 6 and 7). Periapsis for this orbit (O1085) occurred at 48°W, 6°S, in a region with moderate crustal magnetic fields, at an altitude of ~130 km and SZA of ~5°. During this period, the spacecraft remained below the induced magnetosphere boundary until 02:18 UTC, after which MAVEN observed suprathermal particles characteristic of the magnetosheath. Before 02:18 UTC, electron spectra displayed features characteristic of atmospheric photoelectrons throughout. Outside of the main peak of the ionosphere (before 02:02 and after 02:32 UTC), in the transport-dominated regime (above ~200 km, major ion lifetimes are > ~600 s), charged-particle populations and magnetic fields show substantial structure, likely consisting of a mix of transient variations and horizontal and/or vertical structure. O⁺ and O₂+ dominate the thermal ion composition, with both varying over orders of magnitude, particularly on the outbound pass. The draped magnetic-field rotations, compositional changes, and electron temperature changes associated with the ion density layers at L3 and L4 and the intervening density depletions suggest that these represent primarily temporal variations, implying rapid ionospheric reconfigurations, indicative of substantial transport and/or strong compressional waves.

At times L1 and L2, the spacecraft passed sharp thermal ion density layers (more pronounced on the inbound segment). At the same locations, MAVEN observed the signatures of localized currents, visible as a discontinuity in the magnetic field and a rotation toward a horizontal field below the layers (Fig. 7). These features occurred just above a transition to a smoothly varying photoelectron population, which is consistent with the collisional photochemically controlled region of the ionosphere (31). This ion layer may represent the topside layer previously seen in radar (32) and radio sounding (33) by MEx [perhaps also in the Viking-2 descent (35)] but appears narrower (~5 to 10 km) than is apparent from remote measurements. The sharpness of the layer in comparison with expected variations in neutral density and EUV energy deposition implies vertical transport and suggests that it could represent a transition between a region dominated by draped and/or induced magnetic fields and one dominated by crustal fields (33, 34). Localized electric fields could also play a role, as previously observed at Earth (35). The sharp drop in electron temperature...
and C2. These populations peak at the times marked C1 owing to reactions with neutral molecules, but below this layer also indicates a topological boundary that locally affects photoelectron transport and suggests that photochemical processes play a role.

At lower altitudes, O+ densities drop rapidly owing to reactions with neutral molecules, but suprathermal photoelectrons and thermal CO\textsubscript{2}+ ions continue to increase in density (with very similar altitude dependence, commensurate with their production primarily from neutral CO\textsubscript{2}). These populations peak at the times marked C1 and C2—at altitudes of ~140 km, below which they decrease—presumably because of recombination and reactions with neutral species. CO\textsubscript{2}+ densities peak at a higher altitude than that of O+ densities, and higher than observed at higher SZA by Viking. Meanwhile, O2+ densities continue to increase until just above periapsis (time P). The slight decrease in density at periapsis may indicate that the spacecraft reached the main M2 peak of the ionosphere, which is consistent with the periapsis altitude.

The different altitude profiles for major ion species and photoelectrons reflect the variations in source and loss processes as a function of altitude, stemming from the varying deposition of EUV and other energy inputs (comprehensively measured by MAVEN), changes in neutral composition, and the steeply increasing neutral density. Multifluid magnetohydrodynamic (MHD) model results capture some, but not all, of the observed variations in ion abundance along the orbit track (supplementary text S5) (37, 38). The model correctly reproduces the structure of the dominant O2+ ions at altitudes below ~220 km and also captures the structure of the CO\textsubscript{2}+ ions over most of this altitude range. Above ~220 km, in the transport-dominated region, the time-stationary model results cannot adequately capture the transient dynamics. The model also underestimates O+ density everywhere except periapsis and does not capture the turnover in the CO\textsubscript{2}+ density at low altitudes.

All the major ion species show substantial wave structure on the outbound segment (but not on the inbound), extending almost down to periapsis. This wave structure correlates closely (although not one-to-one everywhere) with fluctuations seen in the neutral density at the same time, suggesting that many of the observed neutral and ion fluctuations might have a common origin, presumably gravity waves.

Suprathermal ion measurements provide another probe of collisional processes in the atmosphere. A downward-going population of ~1 keV ions appears between L1 and L2. These ions represent the products of hydrogen energetic neutral atoms (ENAs) produced through charge exchange between solar wind protons and exospheric atoms in the distant corona outside of the bow shock. In neutral form, these particles pass through the magnetosphere unaffected by electromagnetic form, maintaining the same velocity as that of the solar wind. Upon encountering the atmosphere, some of the ENAs undergo charge-stripping reactions and regain their charge, allowing MAVEN to measure them. As the neutral density rises, these particles lose energy through numerous collisions with atmospheric gases. The ratio of electron-stripping to charge-exchange cross sections decreases sharply at lower energies, leading to a decrease in the charged fraction of the precipitating hydrogen between C1 and C2. These penetrating solar wind particles represent an additional source of energy to the upper atmosphere, with a different deposition profile from that of EUV. They also provide a proxy measurement of the solar wind, allowing us to infer an upstream solar wind speed of ~500 km/s and density of ~11 cm-3 (40).

At higher energies of ~10 to 20 keV, SWIA observes an additional population of precipitating ions, which penetrate well into the photochemical region of the atmosphere (below the "exobase"). When this population extends to higher altitudes, at which suprathermal ion composition measurements in this energy range from STATIC (2) are available, they indicate predominantly O+, which is consistent with pickup ions produced by photoionization and charge-transfer reactions in the upstream corona. These precipitating ions...
NGIMS key ion species are provided (O+, O₂ densities are plotted for DD2 orbit O1085, with the corresponding SZA indicated on the right. Four variations of these temperatures. Like the neutral forcing does not appear to control interorbital numerical model simulations. However, this solar regulation of mean exospheric temperatures (averaged gravity forcing. Solar EUV forcing on transport may lead to the formation of the upper atmosphere reservoir that regulates volatile escape.

The thermospheric neutral densities and temperatures vary substantially from orbit to orbit, driven in part by tidal and gravity wave forcing. Solar EUV regulation of mean exospheric temperatures (averaged over several orbits) is confirmed for these DD2 measurements, in comparison with solar-driven numerical model simulations. However, this solar forcing does not appear to control interorbital variations of these temperatures. Like the neutral atmosphere to which it is coupled, the ionosphere revealed by MAVEN is highly dynamic, with substantial structure and temporal variations often observed within a single orbit. Crustal fields clearly affect the structure of the ionosphere, and their effects on transport may lead to the formation of the observed narrow current-carrying plasma layers.

Interpretations and implications

The thermospheric neutral densities and temperatures vary substantially from orbit to orbit, driven in part by tidal and gravity wave forcing. Solar EUV regulation of mean exospheric temperatures (averaged over several orbits) is confirmed for these DD2 measurements, in comparison with solar-driven numerical model simulations. However, this solar forcing does not appear to control interorbital variations of these temperatures. Like the neutral atmosphere to which it is coupled, the ionosphere revealed by MAVEN is highly dynamic, with substantial structure and temporal variations often observed within a single orbit. Crustal fields clearly affect the structure of the ionosphere, and their effects on transport may lead to the formation of the observed narrow current-carrying plasma layers.

Fig. 7. Altitude plots of ion densities and other plasma fields over 130 to 300 km. NGIMS ion densities are plotted for DD2 orbit 01085, with the corresponding SZA indicated on the right. Four NGIMS key ion species are provided (O⁺, O₂⁺, CO₂⁺, and NO⁺) for the (Top) inbound and (Bottom) outbound legs (solid, color-coded curves). Corresponding simulated ion density profiles along the orbit from the multifluid MHD model are plotted (colored squares) for comparison (O⁺, O₂⁺, CO₂⁺ only) (supplementary text S5) (37, 38, 42). The measured inbound ratio (O₂⁺/CO₂⁺) at 150 km is a factor of ~6, whereas that at 220 km is a factor of ~10. These ratios can be compared with corresponding values of 6 and 7 to 9 from Viking Landers 1 and 2, respectively (J3). Also shown for context are scaled values corresponding to the electron temperature, the horizontal magnetic-field magnitude measured by MAG, the suprathermal electron flux measured at 7 eV (the peak of the suprathermal electron flux) by SWEA, and the suprathermal H⁺ density measured by SWIA.

References and Notes

3. The homopause altitude of a given planetary upper atmosphere is commonly estimated as the altitude at which a given species diffusion coefficient matches the specified eddy diffusion coefficient. This altitude represents that level in the atmosphere below which this species is well mixed (homosphere) and above which molecular diffusion serves to separate species according to their individual scale heights (heterosphere). Each species has its particular homopause altitude, owing to the slight variation of molecular diffusion coefficients by species. In reality, the homopause is not a single altitude level, but a transition region across which these molecular and eddy diffusion processes gradually exchange their dominant roles. For Mars, a common mixed-atmosphere scale height is revealed by CO₂, Ar, and N₂ below their homopauses. However, photochemically active species (such as O) do not conform to this mixed-atmosphere scale height.
4. The MAVEN in situ instruments are the Accelerometer (ACC), Langmuir Probe and Waves (LPW), Magnetometer (MAG), Neutral Gas and Ion Mass Spectrometer (NGIMS), Solar Wind Electron Analyzer (SWEA), Solar Wind Ion Analyzer (SWIA), and Supra-thermal and Thermal Ion Composition (STATIC).
6. Areocentric longitude of the Sun, Ls, is used as an angular measure of the Mars year: Ls = 0, 90, 180, and 270 correspond to the start of the northern spring, summer, fall, and winter, respectively.

21. The exosphere of a given planetary upper atmosphere is traditionally estimated as the altitude at which, for a single constituent atmosphere, the collision mean free path equals the temperature sound scale height of this constituent. For Mars, atomic O is the dominant species considered, and calculated global averaged exobase heights vary from ~170 km (Equinox, solar minimum conditions) to ~185 km (Equinox, solar maximum conditions) (45). In reality, the exobase is not a fixed altitude that separates collisional (thermosphere) and collisionless (exosphere) regimes. Instead, full a transitional domain must be considered, which extends from the altitude at which a hot 0 particle produced in this region has a high probability to be thermalized to an altitude at which the collision frequency is very low. Modern hot O exosphere models confirm that this transitional domain extends from ~135 to 300 km altitude (43). The ~200 km altitude is commonly used as an approximation for the traditional exobase altitude.

ACKNOWLEDGMENTS

The MAVEN Deep Dip 2 data sets reported in the paper are archived on the public version of the MAVEN Science Data Center (SDC) website, at the LASP url (https://lasp.colorado.edu/maven/sdc/public/) and on the Planetary Data System (PDS). Datasets from three-dimensional model simulations reported in this paper are also available on the public MAVEN SDC website at https://lasp.colorado.edu/mavensdc/public/pages/models.html. This work was partially supported by the Centre National d’Études Spatiales for the part based on observations with the SWEA instrument embarked on Maven. Part of this research was also carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Y. Lee was supported by the Belgian American Educational Foundation and the Rotary District 5457 (A4), 165–177 (2001). doi: 10.1029/2000JA002003

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/350/6261/aad0459/suppl/DC1

17 July 2015; accepted 21 September 2015

10.1126/science.aad0459
Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability
S. Bougher et al.
Science 350, (2015);
DOI: 10.1126/science.aad0459

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of November 5, 2015):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/350/6261/aad0459.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2015/11/04/350.6261.aad0459.DC1.html

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/content/350/6261/aad0459.full.html#related

This article cites 37 articles, 2 of which can be accessed free:
http://www.sciencemag.org/content/350/6261/aad0459.full.html#ref-list-1

This article has been cited by 1 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/350/6261/aad0459.full.html#related-urls