University of Colorado at Boulder University of Colorado CU Home Search A to Z Index Map
Laboratory for Atmospheric and Space Physics

Juno Papers (all)

Juno Journal Articles (as known by date at bottom of page).

There are 123 papers. [View list in NASA ADS] [ADS Metrics]

123) Migliorini, A., et al. (2019), H3+ characteristics in the Jupiter atmosphere as observed at limb with Juno/JIRAM, Icarus, 329, 132-139, doi:10.1016/j.icarus.2019.04.003.
ADS  Cites
BibTeX DOI
122) Filacchione, G., et al. (2019), Serendipitous infrared observations of Europa by Juno/JIRAM, Icarus, 328, 1-13, doi:10.1016/j.icarus.2019.03.022.
ADS  Cites
BibTeX DOI
121) Galanti, E., et al. (2019), Determining the Depth of Jupiter`s Great Red Spot with Juno: A Slepian Approach, Astrophysical Journal, 874, L24, doi:10.3847/2041-8213/ab1086.
ADS  Cites
BibTeX DOI
120) Pensionerov, I.A., et al. (2019), Model of Jupiter’s Current Sheet With a Piecewise Current Density, Journal of Geophysical Research (Space Physics), 124, 1843-1854, doi:10.1029/2018JA026321.
ADS  Cites
BibTeX DOI
119) Hue, V., et al. (2019), In-flight Characterization and Calibration of the Juno-ultraviolet Spectrograph (Juno-UVS), Astronomical Journal, 157, 90, doi:10.3847/1538-3881/aafb36.
ADS  Cites
BibTeX DOI
118) Li, C. and Chen, X. (2019), Simulating Nonhydrostatic Atmospheres on Planets (SNAP): Formulation, Validation, and Application to the Jovian Atmosphere, Astrophysical Journal, 240, 37, doi:10.3847/1538-4365/aafdaa.
ADS  Cites
BibTeX DOI
117) Ebert, R.W., et al. (2019), Comparing Electron Energetics and UV Brightness in Jupiter’s Northern Polar Region During Juno Perijove 5, Geophysics Research Letters, 46, 19-27, doi:10.1029/2018GL081129.
ADS  Cites
BibTeX DOI
116) Imai, M., et al. (2019), Probing Jovian Broadband Kilometric Radio Sources Tied to the Ultraviolet Main Auroral Oval With Juno, Geophysics Research Letters, 46, 571-579, doi:10.1029/2018GL081227.
ADS  Cites
BibTeX DOI
115) Adriani, A., et al. (2018), Characterization of Mesoscale Waves in the Jupiter NEB by Jupiter InfraRed Auroral Mapper on board Juno, Astronomical Journal, 156, 246, doi:10.3847/1538-3881/aae525.
ADS  Cites
BibTeX DOI
114) Bonfond, B., et al. (2018), Bar Code Events in the Juno-UVS Data: Signature \~10 MeV Electron Microbursts at Jupiter, Geophysics Research Letters, 45, 12, doi:10.1029/2018GL080490.
ADS  Cites
BibTeX DOI
113) Szalay, J.R., et al. (2018), In Situ Observations Connected to the Io Footprint Tail Aurora, Journal of Geophysical Research (Planets), 123, 3061-3077, doi:10.1029/2018JE005752.
ADS  Cites
BibTeX DOI
112) Sánchez-Lavega, A., et al. (2018), The Rich Dynamics of Jupiter`s Great Red Spot from JunoCam: Juno Images, Astronomical Journal, 156, 162, doi:10.3847/1538-3881/aada81.
ADS  Cites
BibTeX DOI
111) Clark, G., et al. (2018), Precipitating Electron Energy Flux and Characteristic Energies in Jupiter’s Main Auroral Region as Measured by Juno/JEDI, Journal of Geophysical Research (Space Physics), 123, 7554-7567, doi:10.1029/2018JA025639.
ADS  Cites
BibTeX DOI
110) Elliott, S.S., et al. (2018), The Acceleration of Electrons to High Energies Over the Jovian Polar Cap via Whistler Mode Wave-Particle Interactions, Journal of Geophysical Research (Space Physics), 123, 7523-7533, doi:10.1029/2018JA025797.
ADS  Cites
BibTeX DOI
109) Gershman, D.J., et al. (2018), Juno Constraints on the Formation of Jupiter’s Magnetospheric Cushion Region, Geophysics Research Letters, 45, 9427-9434, doi:10.1029/2018GL079118.
ADS  Cites
BibTeX DOI
108) Gérard, J.-C., et al. (2018), Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno’s first perijove, Icarus, 312, 145-156, doi:10.1016/j.icarus.2018.04.020.
ADS  Cites
BibTeX DOI
107) Kurth, W.S., et al. (2018), Whistler Mode Waves Associated With Broadband Auroral Electron Precipitation at Jupiter, Geophysics Research Letters, 45, 9372-9379, doi:10.1029/2018GL078566.
ADS  Cites
BibTeX DOI
106) Louarn, P., et al. (2018), Observation of Electron Conics by Juno: Implications for Radio Generation and Acceleration Processes, Geophysics Research Letters, 45, 9408-9416, doi:10.1029/2018GL078973.
ADS  Cites
BibTeX DOI
105) Moore, K.M., et al. (2018), A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field, Nature, 561, 76-78, doi:10.1038/s41586-018-0468-5.
ADS  Cites
BibTeX DOI
104) Fletcher, L.N., et al. (2018), Jupiter`s Mesoscale Waves Observed at 5 µm by Ground-based Observations and Juno JIRAM, Astronomical Journal, 156, 67, doi:10.3847/1538-3881/aace02.
ADS  Cites
BibTeX DOI
103) Imai, M., et al. (2018), Jupiter Lightning-Induced Whistler and Sferic Events With Waves and MWR During Juno Perijoves, Geophysics Research Letters, 45, 7268-7276, doi:10.1029/2018GL078864.
ADS  Cites
BibTeX DOI
102) Mura, A., et al. (2018), Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter, Science, 361, 774-777, doi:10.1126/science.aat1450.
ADS  Cites
BibTeX DOI
101) Phipps, P.H., et al. (2018), Distribution of Plasma in the Io Plasma Torus as Seen by Radio Occultation During Juno Perijove 1, Journal of Geophysical Research (Space Physics), 123, 6207-6222, doi:10.1029/2017JA025113.
ADS  Cites
BibTeX DOI
100) Kolmašová, I., et al. (2018), Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth, Nature Astronomy, 2, 544-548, doi:10.1038/s41550-018-0442-z.
ADS  Cites
BibTeX DOI
99) Stallard, T.S., et al. (2018), Identification of Jupiter’s magnetic equator through H3+ ionospheric emission, Nature Astronomy, 2, 773-777, doi:10.1038/s41550-018-0523-z.
ADS  Cites
BibTeX DOI
98) Brown, S., et al. (2018), Prevalent lightning sferics at 600 megahertz near Jupiter’s poles, Nature, 558, 87-90, doi:10.1038/s41586-018-0156-5.
ADS  Cites
BibTeX DOI
97) Grassi, D., et al. (2018), First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAM-Juno Images, Journal of Geophysical Research (Planets), 123, 1511-1524, doi:10.1029/2018JE005555.
ADS  Cites
BibTeX DOI
96) Grodent, D., et al. (2018), Jupiter’s Aurora Observed With HST During Juno Orbits 3 to 7, Journal of Geophysical Research (Space Physics), 123, 3299-3319, doi:10.1002/2017JA025046.
ADS  Cites
BibTeX DOI
95) Wilson, R.J., et al. (2018), Solar Wind Properties During Juno’s Approach to Jupiter: Data Analysis and Resulting Plasma Properties Utilizing a 1-D Forward Model, Journal of Geophysical Research (Space Physics), 123, 2772-2786, doi:10.1002/2017JA024860.
ADS  Cites
BibTeX DOI
94) Adriani, A., et al. (2018), Clusters of cyclones encircling Jupiter`s poles, Nature, 555, 216-219, doi:10.1038/nature25491.
ADS  Cites
BibTeX DOI
93) Connerney, J.E.P., et al. (2018), A New Model of Jupiter’s Magnetic Field From Juno’s First Nine Orbits, Geophysics Research Letters, 45, 2590-2596, doi:10.1002/2018GL077312.
ADS  Cites
BibTeX DOI
92) Guillot, T., et al. (2018), A suppression of differential rotation in Jupiter`s deep interior, Nature, 555, 227-230, doi:10.1038/nature25775.
ADS  Cites
BibTeX DOI
91) Iess, L., et al. (2018), Measurement of Jupiter`s asymmetric gravity field, Nature, 555, 220-222, doi:10.1038/nature25776.
ADS  Cites
BibTeX DOI
90) Kaspi, Y., et al. (2018), Jupiter`s atmospheric jet streams extend thousands of kilometres deep, Nature, 555, 223-226, doi:10.1038/nature25793.
ADS  Cites
BibTeX DOI
89) Paranicas, C., et al. (2018), Intervals of Intense Energetic Electron Beams Over Jupiter’s Poles, Journal of Geophysical Research (Space Physics), 123, 1989-1999, doi:10.1002/2017JA025106.
ADS  Cites
BibTeX DOI
88) Elliott, S.S., et al. (2018), Pitch Angle Scattering of Upgoing Electron Beams in Jupiter’s Polar Regions by Whistler Mode Waves, Geophysics Research Letters, 45, 1246-1252, doi:10.1002/2017GL076878.
ADS  Cites
BibTeX DOI
87) Mauk, B.H., et al. (2018), Diverse Electron and Ion Acceleration Characteristics Observed Over Jupiter’s Main Aurora, Geophysics Research Letters, 45, 1277-1285, doi:10.1002/2017GL076901.
ADS  Cites
BibTeX DOI
86) Imai, M., et al. (2017), Analysis of Jovian low-frequency radio emissions based on stereoscopic observations with Juno and Earth-based radio telescopes, Planetary Radio Emissions VIII, 13-23, doi:10.1553/PRE8s13.
ADS  Cites
BibTeX DOI
85) Kurth, W.S., et al. (2017), First observations near Jupiter by the Juno Waves investigation, Planetary Radio Emissions VIII, 1-12, doi:10.1553/PRE8s1.
ADS  Cites
BibTeX DOI
84) Louis, C., et al. (2017), Simulating Jupiter-satellite decametric emissions with ExPRES: A parametric study, Planetary Radio Emissions VIII, 59-72, doi:10.1553/PRE8s59.
ADS  Cites
BibTeX DOI
83) Adriani, A., et al. (2017), JIRAM, the Jovian Infrared Auroral Mapper, Space Science Reviews, 213, 393-446, doi:10.1007/s11214-014-0094-y.
ADS  Cites
BibTeX DOI
82) Asmar, S.W., et al. (2017), The Juno Gravity Science Instrument, Space Science Reviews, 213, 205-218, doi:10.1007/s11214-017-0428-7.
ADS  Cites
BibTeX DOI
81) Bagenal, F., et al. (2017), Magnetospheric Science Objectives of the Juno Mission, Space Science Reviews, 213, 219-287, doi:10.1007/s11214-014-0036-8.
ADS  Cites
BibTeX DOI
80) Becker, H.N., et al. (2017), The Juno Radiation Monitoring (RM) Investigation, Space Science Reviews, 213, 507-545, doi:10.1007/s11214-017-0345-9.
ADS  Cites
BibTeX DOI
79) Bolton, S.J. and Connerney, J.E.P. (2017), Editorial: Topical Collection of the Juno Mission Science Objectives, Instruments, and Implementation, Space Science Reviews, 213, 1-3, doi:10.1007/s11214-017-0430-0.
ADS  Cites
BibTeX DOI
78) Bolton, S.J., et al. (2017), The Juno Mission, Space Science Reviews, 213, 5-37, doi:10.1007/s11214-017-0429-6.
ADS  Cites
BibTeX DOI
77) Cao, H. and Stevenson, D.J. (2017), Zonal flow magnetic field interaction in the semi-conducting region of giant planets, Icarus, 296, 59-72, doi:10.1016/j.icarus.2017.05.015.
ADS  Cites
BibTeX DOI
76) Connerney, J.E.P., et al. (2017), The Juno Magnetic Field Investigation, Space Science Reviews, 213, 39-138, doi:10.1007/s11214-017-0334-z.
ADS  Cites
BibTeX DOI
75) Gladstone, G.R., et al. (2017), The Ultraviolet Spectrograph on NASA’s Juno Mission, Space Science Reviews, 213, 447-473, doi:10.1007/s11214-014-0040-z.
ADS  Cites
BibTeX DOI
74) Grassi, D., et al. (2017), Analysis of IR-bright regions of Jupiter in JIRAM-Juno data: Methods and validation of algorithms, Journal of Quantitiative Spectroscopy and Radiative Transfer, 202, 200-209, doi:10.1016/j.jqsrt.2017.08.008.
ADS  Cites
BibTeX DOI
73) Hansen, C.J., et al. (2017), Junocam: Juno’s Outreach Camera, Space Science Reviews, 213, 475-506, doi:10.1007/s11214-014-0079-x.
ADS  Cites
BibTeX DOI
72) Janssen, M.A., et al. (2017), MWR: Microwave Radiometer for the Juno Mission to Jupiter, Space Science Reviews, 213, 139-185, doi:10.1007/s11214-017-0349-5.
ADS  Cites
BibTeX DOI
71) Kurth, W.S., et al. (2017), The Juno Waves Investigation, Space Science Reviews, 213, 347-392, doi:10.1007/s11214-017-0396-y.
ADS  Cites
BibTeX DOI
70) Mauk, B.H., et al. (2017), The Jupiter Energetic Particle Detector Instrument (JEDI) Investigation for the Juno Mission, Space Science Reviews, 213, 289-346, doi:10.1007/s11214-013-0025-3.
ADS  Cites
BibTeX DOI
69) McComas, D.J., et al. (2017), The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter, Space Science Reviews, 213, 547-643, doi:10.1007/s11214-013-9990-9.
ADS  Cites
BibTeX DOI
68) Steffes, P.G., et al. (2017), High-Precision Laboratory Measurements Supporting Retrieval of Water Vapor, Gaseous Ammonia, and Aqueous Ammonia Clouds with the Juno Microwave Radiometer (MWR), Space Science Reviews, 213, 187-204, doi:10.1007/s11214-016-0265-0.
ADS  Cites
BibTeX DOI
67) Tollefson, J., et al. (2017), Changes in Jupiter’s Zonal Wind Profile preceding and during the Juno mission, Icarus, 296, 163-178, doi:10.1016/j.icarus.2017.06.007.
ADS  Cites
BibTeX DOI
66) Li, W., et al. (2017), Understanding the Origin of Jupiter’s Diffuse Aurora Using Juno’s First Perijove Observations, Geophysics Research Letters, 44, 10, doi:10.1002/2017GL075545.
ADS  Cites
BibTeX DOI
65) Clark, G., et al. (2017), Energetic particle signatures of magnetic field-aligned potentials over Jupiter’s polar regions, Geophysics Research Letters, 44, 8703-8711, doi:10.1002/2017GL074366.
ADS  Cites
BibTeX DOI
64) Ebert, R.W., et al. (2017), Spatial Distribution and Properties of 0.1-100 keV Electrons in Jupiter’s Polar Auroral Region, Geophysics Research Letters, 44, 9199-9207, doi:10.1002/2017GL075106.
ADS  Cites
BibTeX DOI
63) Louis, C.K., et al. (2017), Io-Jupiter decametric arcs observed by Juno/Waves compared to ExPRES simulations, Geophysics Research Letters, 44, 9225-9232, doi:10.1002/2017GL073036.
ADS  Cites
BibTeX DOI
62) Mauk, B.H., et al. (2017), Discrete and broadband electron acceleration in Jupiter’s powerful aurora, Nature, 549, 66-69, doi:10.1038/nature23648.
ADS  Cites
BibTeX DOI
61) Santos-Costa, D., et al. (2017), First look at Jupiter’s synchrotron emission from Juno’s perspective, Geophysics Research Letters, 44, 8676-8684, doi:10.1002/2017GL072836.
ADS  Cites
BibTeX DOI
60) Bolton, S. and Levin, S. and Bagenal, F. (2017), Juno’s first glimpse of Jupiter’s complexity, Geophysics Research Letters, 44, 7663-7667, doi:10.1002/2017GL074118.
ADS  Cites
BibTeX DOI
59) Gershman, D.J., et al. (2017), Juno observations of large-scale compressions of Jupiter’s dawnside magnetopause, Geophysics Research Letters, 44, 7559-7568, doi:10.1002/2017GL073132.
ADS  Cites
BibTeX DOI
58) Gladstone, G.R., et al. (2017), Juno-UVS approach observations of Jupiter’s auroras, Geophysics Research Letters, 44, 7668-7675, doi:10.1002/2017GL073377.
ADS  Cites
BibTeX DOI
57) Ingersoll, A.P., et al. (2017), Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer, Geophysics Research Letters, 44, 7676-7685, doi:10.1002/2017GL074277.
ADS  Cites
BibTeX DOI
56) Nichols, J.D., et al. (2017), Response of Jupiter’s auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno, Geophysics Research Letters, 44, 7643-7652, doi:10.1002/2017GL073029.
ADS  Cites
BibTeX DOI
55) Valek, P.W., et al. (2017), Hot flow anomaly observed at Jupiter’s bow shock, Geophysics Research Letters, 44, 8107-8112, doi:10.1002/2017GL073175.
ADS  Cites
BibTeX DOI
54) Allegrini, F., et al. (2017), Electron beams and loss cones in the auroral regions of Jupiter, Geophysics Research Letters, 44, 7131-7139, doi:10.1002/2017GL073180.
ADS  Cites
BibTeX DOI
53) Fletcher, L.N., et al. (2017), Jupiter’s North Equatorial Belt expansion and thermal wave activity ahead of Juno’s arrival, Geophysics Research Letters, 44, 7140-7148, doi:10.1002/2017GL073383.
ADS  Cites
BibTeX DOI
52) Haggerty, D.K., et al. (2017), Juno/JEDI observations of 0.01 to >10 MeV energetic ions in the Jovian auroral regions: Anticipating a source for polar X-ray emission, Geophysics Research Letters, 44, 6476-6482, doi:10.1002/2017GL072866.
ADS  Cites
BibTeX DOI
51) Imai, M., et al. (2017), Direction-finding measurements of Jovian low-frequency radio components by Juno near Perijove 1, Geophysics Research Letters, 44, 6508-6516, doi:10.1002/2017GL072850.
ADS  Cites
BibTeX DOI
50) Kurth, W.S., et al. (2017), A new view of Jupiter’s auroral radio spectrum, Geophysics Research Letters, 44, 7114-7121, doi:10.1002/2017GL072889.
ADS  Cites
BibTeX DOI
49) Szalay, J.R., et al. (2017), Plasma measurements in the Jovian polar region with Juno/JADE, Geophysics Research Letters, 44, 7122-7130, doi:10.1002/2017GL072837.
ADS  Cites
BibTeX DOI
48) Gruesbeck, J.R., et al. (2017), The interplanetary magnetic field observed by Juno enroute to Jupiter, Geophysics Research Letters, 44, 5936-5942, doi:10.1002/2017GL073137.
ADS  Cites
BibTeX DOI
47) Kaspi, Y., et al. (2017), The effect of differential rotation on Jupiter’s low-degree even gravity moments, Geophysics Research Letters, 44, 5960-5968, doi:10.1002/2017GL073629.
ADS  Cites
BibTeX DOI
46) Kollmann, P., et al. (2017), A heavy ion and proton radiation belt inside of Jupiter’s rings, Geophysics Research Letters, 44, 5259-5268, doi:10.1002/2017GL073730.
ADS  Cites
BibTeX DOI
45) Li, C., et al. (2017), The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data, Geophysics Research Letters, 44, 5317-5325, doi:10.1002/2017GL073159.
ADS  Cites
BibTeX DOI
44) Mura, A., et al. (2017), Infrared observations of Jovian aurora from Juno’s first orbits: Main oval and satellite footprints, Geophysics Research Letters, 44, 5308-5316, doi:10.1002/2017GL072954.
ADS  Cites
BibTeX DOI
43) Sinclair, J.A., et al. (2017), Independent evolution of stratospheric temperatures in Jupiter’s northern and southern auroral regions from 2014 to 2016, Geophysics Research Letters, 44, 5345-5354, doi:10.1002/2017GL073529.
ADS  Cites
BibTeX DOI
42) Adriani, A., et al. (2017), Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the north aurora, Geophysics Research Letters, 44, 4633-4640, doi:10.1002/2017GL072905.
ADS  Cites
BibTeX DOI
41) Becker, H.N., et al. (2017), Observations of MeV electrons in Jupiter’s innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3, Geophysics Research Letters, 44, 4481-4488, doi:10.1002/2017GL073091.
ADS  Cites
BibTeX DOI
40) Benn, M., et al. (2017), Observations of interplanetary dust by the Juno magnetometer investigation, Geophysics Research Letters, 44, 4701-4708, doi:10.1002/2017GL073186.
ADS  Cites
BibTeX DOI
39) Bolton, S.J., et al. (2017), Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft, Science, 356, 821-825, doi:10.1126/science.aal2108.
ADS  Cites
BibTeX DOI
38) Bonfond, B., et al. (2017), Morphology of the UV aurorae Jupiter during Juno’s first perijove observations, Geophysics Research Letters, 44, 4463-4471, doi:10.1002/2017GL073114.
ADS  Cites
BibTeX DOI
37) Clark, G., et al. (2017), Observation and interpretation of energetic ion conics in Jupiter’s polar magnetosphere, Geophysics Research Letters, 44, 4419-4425, doi:10.1002/2016GL072325.
ADS  Cites
BibTeX DOI
36) Connerney, J.E.P., et al. (2017), Jupiter`s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits, Science, 356, 826-832, doi:10.1126/science.aam5928.
ADS  Cites
BibTeX DOI
35) Cowley, S.W.H., et al. (2017), Magnetosphere-ionosphere coupling at Jupiter: Expectations for Juno Perijove 1 from a steady state axisymmetric physical model, Geophysics Research Letters, 44, 4497-4505, doi:10.1002/2017GL073129.
ADS  Cites
BibTeX DOI
34) Dinelli, B.M., et al. (2017), Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region, Geophysics Research Letters, 44, 4625-4632, doi:10.1002/2017GL072929.
ADS  Cites
BibTeX DOI
33) Ebert, R.W., et al. (2017), Accelerated flows at Jupiter’s magnetopause: Evidence for magnetic reconnection along the dawn flank, Geophysics Research Letters, 44, 4401-4409, doi:10.1002/2016GL072187.
ADS  Cites
BibTeX DOI
32) Folkner, W.M., et al. (2017), Jupiter gravity field estimated from the first two Juno orbits, Geophysics Research Letters, 44, 4694-4700, doi:10.1002/2017GL073140.
ADS  Cites
BibTeX DOI
31) Grassi, D., et al. (2017), Preliminary results on the composition of Jupiter’s troposphere in hot spot regions from the JIRAM/Juno instrument, Geophysics Research Letters, 44, 4615-4624, doi:10.1002/2017GL072841.
ADS  Cites
BibTeX DOI
30) Hospodarsky, G.B., et al. (2017), Jovian bow shock and magnetopause encounters by the Juno spacecraft, Geophysics Research Letters, 44, 4506-4512, doi:10.1002/2017GL073177.
ADS  Cites
BibTeX DOI
29) Hueso, R., et al. (2017), Jupiter cloud morphology and zonal winds from ground-based observations before and during Juno’s first perijove, Geophysics Research Letters, 44, 4669-4678, doi:10.1002/2017GL073444.
ADS  Cites
BibTeX DOI
28) Imai, M., et al. (2017), Statistical study of latitudinal beaming of Jupiter’s decametric radio emissions using Juno, Geophysics Research Letters, 44, 4584-4590, doi:10.1002/2017GL073148.
ADS  Cites
BibTeX DOI
27) Imai, M., et al. (2017), Latitudinal beaming of Jovian decametric radio emissions as viewed from Juno and the Nançay Decameter Array, Geophysics Research Letters, 44, 4455-4462, doi:10.1002/2016GL072454.
ADS  Cites
BibTeX DOI
26) Kimura, T., et al. (2017), Transient brightening of Jupiter’s aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft, Geophysics Research Letters, 44, 4523-4531, doi:10.1002/2017GL072912.
ADS  Cites
BibTeX DOI
25) Louarn, P., et al. (2017), Generation of the Jovian hectometric radiation: First lessons from Juno, Geophysics Research Letters, 44, 4439-4446, doi:10.1002/2017GL072923.
ADS  Cites
BibTeX DOI
24) Mauk, B.H., et al. (2017), Juno observations of energetic charged particles over Jupiter’s polar regions: Analysis of monodirectional and bidirectional electron beams, Geophysics Research Letters, 44, 4410-4418, doi:10.1002/2016GL072286.
ADS  Cites
BibTeX DOI
23) Ma, Q., et al. (2017), Electron butterfly distributions at particular magnetic latitudes observed during Juno’s perijove pass, Geophysics Research Letters, 44, 4489-4496, doi:10.1002/2017GL072983.
ADS  Cites
BibTeX DOI
22) McComas, D.J., et al. (2017), Plasma environment at the dawn flank of Jupiter’s magnetosphere: Juno arrives at Jupiter, Geophysics Research Letters, 44, 4432-4438, doi:10.1002/2017GL072831.
ADS  Cites
BibTeX DOI
21) Moore, K.M., et al. (2017), The analysis of initial Juno magnetometer data using a sparse magnetic field representation, Geophysics Research Letters, 44, 4687-4693, doi:10.1002/2017GL073133.
ADS  Cites
BibTeX DOI
20) Moore, L., et al. (2017), Variability of Jupiter’s IR H3+ aurorae during Juno approach, Geophysics Research Letters, 44, 4513-4522, doi:10.1002/2017GL073156.
ADS  Cites
BibTeX DOI
19) Moriconi, M.L., et al. (2017), Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions, Geophysics Research Letters, 44, 4641-4648, doi:10.1002/2017GL073592.
ADS  Cites
BibTeX DOI
18) Moriconi, M.L. and Noschese, R. and Adriani, A. (2017), Processing tools refinement for the JIRAM arrival to Jupiter, European Physical Journal Plus, 132, 227, doi:10.1140/epjp/i2017-11548-y.
ADS  Cites
BibTeX DOI
17) Orton, G.S., et al. (2017), The first close-up images of Jupiter’s polar regions: Results from the Juno mission JunoCam instrument, Geophysics Research Letters, 44, 4599-4606, doi:10.1002/2016GL072443.
ADS  Cites
BibTeX DOI
16) Orton, G.S., et al. (2017), Multiple-wavelength sensing of Jupiter during the Juno mission’s first perijove passage, Geophysics Research Letters, 44, 4607-4614, doi:10.1002/2017GL073019.
ADS  Cites
BibTeX DOI
15) Paranicas, C., et al. (2017), Radiation near Jupiter detected by Juno/JEDI during PJ1 and PJ3, Geophysics Research Letters, 44, 4426-4431, doi:10.1002/2017GL072600.
ADS  Cites
BibTeX DOI
14) Sindoni, G., et al. (2017), Characterization of the white ovals on Jupiter’s southern hemisphere using the first data by the Juno/JIRAM instrument, Geophysics Research Letters, 44, 4660-4668, doi:10.1002/2017GL072940.
ADS  Cites
BibTeX DOI
13) Sánchez-Lavega, A., et al. (2017), A planetary-scale disturbance in the most intense Jovian atmospheric jet from JunoCam and ground-based observations, Geophysics Research Letters, 44, 4679-4686, doi:10.1002/2017GL073421.
ADS  Cites
BibTeX DOI
12) Tetrick, S.S., et al. (2017), Plasma waves in Jupiter’s high-latitude regions: Observations from the Juno spacecraft, Geophysics Research Letters, 44, 4447-4454, doi:10.1002/2017GL073073.
ADS  Cites
BibTeX DOI
11) Wahl, S.M., et al. (2017), Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core, Geophysics Research Letters, 44, 4649-4659, doi:10.1002/2017GL073160.
ADS  Cites
BibTeX DOI
10) Zhang, X.-J., et al. (2017), Searching for low-altitude magnetic field anomalies by using observations of the energetic particle loss cone on JUNO, Geophysics Research Letters, 44, 4472-4480, doi:10.1002/2017GL072902.
ADS  Cites
BibTeX DOI
9) Cao, H. and Stevenson, D.J. (2017), Gravity and zonal flows of giant planets: From the Euler equation to the thermal wind equation, Journal of Geophysical Research (Planets), 122, 686-700, doi:10.1002/2017JE005272.
ADS  Cites
BibTeX DOI
8) Hospodarsky, G.B. (2016), Spaced-based search coil magnetometers, Journal of Geophysical Research (Space Physics), 121, 12, doi:10.1002/2016JA022565.
ADS  Cites
BibTeX DOI
7) Sampl, M., et al. (2016), Juno model rheometry and simulation, Radio Science, 51, 1627-1635, doi:10.1002/2016RS005954.
ADS  Cites
BibTeX DOI
6) Adriani, A., et al. (2016), Juno’s Earth flyby: the Jovian infrared Auroral Mapper preliminary results, Astrophysics and Space Science, 361, 272, doi:10.1007/s10509-016-2842-9.
ADS  Cites
BibTeX DOI
5) Pedersen, D.A.K., et al. (2016), MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging, Acta Astronautica, 118, 308-315, doi:10.1016/j.actaastro.2015.11.001.
ADS  Cites
BibTeX DOI
4) Bernard, D.E., et al. (2013), Europa planetary protection for Juno Jupiter Orbiter, Advances in Space Research, 52, 547-568, doi:10.1016/j.asr.2013.03.015.
ADS  Cites
BibTeX DOI
3) Grassi, D., et al. (2010), Jupiter`s hot spots: Quantitative assessment of the retrieval capabilities of future IR spectro-imagers, Planetary Space Science, 58, 1265-1278, doi:10.1016/j.pss.2010.05.003.
ADS  Cites
BibTeX DOI
2) Adriani, A., et al. (2008), JIRAM, the Image Spectrometer in the Near Infrared on Board the Juno Mission to Jupiter, Astrobiology, 8, 613-622, doi:10.1089/ast.2007.0167.
ADS  Cites
BibTeX DOI
1) Matousek, S. (2007), The Juno New Frontiers mission, Acta Astronautica, 61, 932-939, doi:10.1016/j.actaastro.2006.12.013.
ADS  Cites
BibTeX DOI
Input file:            Juno_Known_20190423.doi    (2019-May-06 14:58:03)
Citations/BibTeX file: Juno_Known_20190423.bibtex (2019-May-06 15:04:48)

Below is a list of DOIs of the 123 papers with DOIs, in alphabetical order:

10.1002/2016GL072187
10.1002/2016GL072286
10.1002/2016GL072325
10.1002/2016GL072443
10.1002/2016GL072454
10.1002/2016JA022565
10.1002/2016RS005954
10.1002/2017GL072600
10.1002/2017GL072831
10.1002/2017GL072836
10.1002/2017GL072837
10.1002/2017GL072841
10.1002/2017GL072850
10.1002/2017GL072866
10.1002/2017GL072889
10.1002/2017GL072902
10.1002/2017GL072905
10.1002/2017GL072912
10.1002/2017GL072923
10.1002/2017GL072929
10.1002/2017GL072940
10.1002/2017GL072954
10.1002/2017GL072983
10.1002/2017GL073019
10.1002/2017GL073029
10.1002/2017GL073036
10.1002/2017GL073073
10.1002/2017GL073091
10.1002/2017GL073114
10.1002/2017GL073129
10.1002/2017GL073132
10.1002/2017GL073133
10.1002/2017GL073137
10.1002/2017GL073140
10.1002/2017GL073148
10.1002/2017GL073156
10.1002/2017GL073159
10.1002/2017GL073160
10.1002/2017GL073175
10.1002/2017GL073177
10.1002/2017GL073180
10.1002/2017GL073186
10.1002/2017GL073377
10.1002/2017GL073383
10.1002/2017GL073421
10.1002/2017GL073444
10.1002/2017GL073529
10.1002/2017GL073592
10.1002/2017GL073629
10.1002/2017GL073730
10.1002/2017GL074118
10.1002/2017GL074277
10.1002/2017GL074366
10.1002/2017GL075106
10.1002/2017GL075545
10.1002/2017GL076878
10.1002/2017GL076901
10.1002/2017JA024860
10.1002/2017JA025046
10.1002/2017JA025106
10.1002/2017JE005272
10.1002/2018GL077312
10.1007/s10509-016-2842-9
10.1007/s11214-013-0025-3
10.1007/s11214-013-9990-9
10.1007/s11214-014-0036-8
10.1007/s11214-014-0040-z
10.1007/s11214-014-0079-x
10.1007/s11214-014-0094-y
10.1007/s11214-016-0265-0
10.1007/s11214-017-0334-z
10.1007/s11214-017-0345-9
10.1007/s11214-017-0349-5
10.1007/s11214-017-0396-y
10.1007/s11214-017-0428-7
10.1007/s11214-017-0429-6
10.1007/s11214-017-0430-0
10.1016/j.actaastro.2006.12.013
10.1016/j.actaastro.2015.11.001
10.1016/j.asr.2013.03.015
10.1016/j.icarus.2017.05.015
10.1016/j.icarus.2017.06.007
10.1016/j.icarus.2018.04.020
10.1016/j.icarus.2019.03.022
10.1016/j.icarus.2019.04.003
10.1016/j.jqsrt.2017.08.008
10.1016/j.pss.2010.05.003
10.1029/2017JA025113
10.1029/2018GL078566
10.1029/2018GL078864
10.1029/2018GL078973
10.1029/2018GL079118
10.1029/2018GL080490
10.1029/2018GL081129
10.1029/2018GL081227
10.1029/2018JA025639
10.1029/2018JA025797
10.1029/2018JA026321
10.1029/2018JE005555
10.1029/2018JE005752
10.1038/nature23648
10.1038/nature25491
10.1038/nature25775
10.1038/nature25776
10.1038/nature25793
10.1038/s41550-018-0442-z
10.1038/s41550-018-0523-z
10.1038/s41586-018-0156-5
10.1038/s41586-018-0468-5
10.1089/ast.2007.0167
10.1126/science.aal2108
10.1126/science.aam5928
10.1126/science.aat1450
10.1140/epjp/i2017-11548-y
10.1553/PRE8s1
10.1553/PRE8s13
10.1553/PRE8s59
10.3847/1538-3881/aace02
10.3847/1538-3881/aada81
10.3847/1538-3881/aae525
10.3847/1538-3881/aafb36
10.3847/1538-4365/aafdaa
10.3847/2041-8213/ab1086