University of Colorado at Boulder University of Colorado CU Home Search A to Z Index Map
Laboratory for Atmospheric and Space Physics

Juno Papers (all)

Juno Journal Articles (as known by date at bottom of page).
(Primary source is Steve L’s papers spreadsheet, then any Rob W randomly spots.)

These DOIs were not found in NASA ADS (yet), so are excluded from the following section:
– Szalay et al. (2024), Europa Modifies Jupiter’s Plasma Sheet, doi: 10.1029/2023gl105809
– Delamere et al. (2024), Signatures of Open Magnetic Flux in Jupiter’s Dawnside Magnetotail, doi: 10.1029/2023av001111
– Sarkango et al. (2024), Resonant Plasma Acceleration at Jupiter Driven by Satellite‐Magnetosphere Interactions, doi: 10.1029/2023gl107431
– Moirano et al. (2024), The Infrared Auroral Footprint Tracks of Io, Europa and Ganymede at Jupiter Observed by Juno‐JIRAM, doi: 10.1029/2023je008130

There are 392 papers. [View list in NASA ADS] ← ADS Library Rob W keeps.

392)Groulard, A., et al. (2024), Dawn-dusk asymmetry in the main auroral emissions at Jupiter observed with Juno-UVS, Icarus, 413, 116005, doi:10.1016/j.icarus.2024.116005.
ADS  Cites
BibTeX DOI 
391)Li, Cheng, et al. (2024), Super-adiabatic temperature gradient at Jupiter’s equatorial zone and implications for the water abundance, Icarus, 414, 116028, doi:10.1016/j.icarus.2024.116028.
ADS  Cites
BibTeX DOI 
390)Wilson, R.J. (2024), Jovian current disk crossings as observed by Juno JADE-I, Icarus, 413, 116006, doi:10.1016/j.icarus.2024.116006.
ADS  Cites
BibTeX DOI 
389)Militzer, Burkhard and Hubbard, William B. (2024), Study of Jupiter’s interior: Comparison of 2, 3, 4, 5, and 6 layer models, Icarus, 411, 115955, doi:10.1016/j.icarus.2024.115955.
ADS  Cites
BibTeX DOI 
388)Szalay, J.R., et al. (2024), Oxygen production from dissociation of Europa’s water-ice surface, Nature Astronomy, doi:10.1038/s41550-024-02206-x.
ADS  Cites
BibTeX DOI 
387)Enghoff, Martin B., et al. (2024), Cutoff Rigidities, Galactic Cosmic Ray Flux, and Heavy Ion Detections at Jupiter, Journal of Geophysical Research (Planets), 129, e2023JE008085, doi:10.1029/2023JE008085.
ADS  Cites
BibTeX DOI 
386)Addison, Peter, et al. (2024), Magnetic Signatures of the Interaction Between Europa and Jupiter’s Magnetosphere During the Juno Flyby, Geophysics Research Letters, 51, e2023GL106810, doi:10.1029/2023GL106810.
ADS  Cites
BibTeX DOI 
385)Gu, W.D., et al. (2024), A Survey of Magnetic Field Line Curvature in Jovian Dawn Magnetodisc, Geophysics Research Letters, 51, e2023GL106971, doi:10.1029/2023GL106971.
ADS  Cites
BibTeX DOI 
384)Palmaerts, B., et al. (2024), Overview of a large observing campaign of Jupiter’s aurora with the Hubble Space Telescope combined with Juno-UVS data, Icarus, 408, 115815, doi:10.1016/j.icarus.2023.115815.
ADS  Cites
BibTeX DOI 
383)Becker, Heidi N., et al. (2023), A Complex Region of Europa’s Surface With Hints of Recent Activity Revealed by Juno’s Stellar Reference Unit, Journal of Geophysical Research (Planets), 128, e2023JE008105, doi:10.1029/2023JE008105.
ADS  Cites
BibTeX DOI 
382)Daly, A., et al. (2023), Plasma Wave and Particle Dynamics During Interchange Events in the Jovian Magnetosphere Using Juno Observations, Geophysics Research Letters, 50, e2023GL103894, doi:10.1029/2023GL103894.
ADS  Cites
BibTeX DOI 
381)Kurth, W.S., et al. (2023), Juno Plasma Wave Observations at Europa, Geophysics Research Letters, 50, e2023GL105775, doi:10.1029/2023GL105775.
ADS  Cites
BibTeX DOI 
380)Louis, C.K., et al. (2023), Source of Radio Emissions Induced by the Galilean Moons Io, Europa and Ganymede: In Situ Measurements by Juno, Journal of Geophysical Research (Space Physics), 128, e2023JA031985, doi:10.1029/2023JA031985.
ADS  Cites
BibTeX DOI 
379)McEntee, S.C., et al. (2023), Long Exposure Chandra X-Ray Observation of Jupiter’s Auroral Emissions During Juno Plasmasheet Encounters in September 2021, Journal of Geophysical Research (Space Physics), 128, e2023JA031901, doi:10.1029/2023JA031901.
ADS  Cites
BibTeX DOI 
378)Stahl, Aaron, et al. (2023), A Model of Ganymede’s Magnetic and Plasma Environment During the Juno PJ34 Flyby, Journal of Geophysical Research (Space Physics), 128, e2023JA032113, doi:10.1029/2023JA032113.
ADS  Cites
BibTeX DOI 
377)Paranicas, C., et al. (2023), Energetic Electrons Near Europa From Juno JEDI Data, Geophysics Research Letters, 50, e2023GL105598, doi:10.1029/2023GL105598.
ADS  Cites
BibTeX DOI 
376)Parisi, M., et al. (2023), Radio Occultation Measurements of Europa’s Ionosphere From Juno’s Close Flyby, Geophysics Research Letters, 50, e2023GL106637, doi:10.1029/2023GL106637.
ADS  Cites
BibTeX DOI 
375)Weigt, D.M., et al. (2023), Identifying the Variety of Jovian X-Ray Auroral Structures: Tying the Morphology of X-Ray Emissions to Associated Magnetospheric Dynamics, Journal of Geophysical Research (Space Physics), 128, e2023JA031656, doi:10.1029/2023JA03165610.22541/essoar.168298676.61403547/v1.
ADS  Cites
BibTeX DOI 
374)Gavriel, Nimrod and Kaspi, Yohai (2023), The Westward Drift of Jupiter’s Polar Cyclones Explained by a Center-of-Mass Approach, Geophysics Research Letters, 50, e2023GL103635, doi:10.1029/2023GL103635.
ADS  Cites
BibTeX DOI 
373)Liu, Z. -Y. and Blanc, M. and Zong, Q. -G. (2023), A Juno-Era View of Electric Currents in Jupiter’s Magnetodisk, Journal of Geophysical Research (Space Physics), 128, e2023JA031436, doi:10.1029/2023JA03143610.22541/essoar.167751577.72637945/v1.
ADS  Cites
BibTeX DOI 
372)Nichols, J.D., et al. (2023), Jovian Magnetospheric Injections Observed by the Hubble Space Telescope and Juno, Geophysics Research Letters, 50, e2023GL105549, doi:10.1029/2023GL105549.
ADS  Cites
BibTeX DOI 
371)Louis, C.K., et al. (2023), Effect of a Magnetospheric Compression on Jovian Radio Emissions: In Situ Case Study Using Juno Data, Journal of Geophysical Research (Space Physics), 128, e2022JA031155, doi:10.1029/2022JA031155.
ADS  Cites
BibTeX DOI 
370)Wang, Yujie, et al. (2023), Jupiter’s Coordinate System Transformations: A Guide for Future Studies of the Jovian System, Earth and Space Science, 10, e2023EA003147, doi:10.1029/2023EA003147.
ADS  Cites
BibTeX DOI 
369)Haewsantati, K., et al. (2023), Juno’s Multi-Instruments Observations During the Flybys of Auroral Bright Spots in Jupiter’s Polar Aurorae, Journal of Geophysical Research (Space Physics), 128, e2023JA031396, doi:10.1029/2023JA031396.
ADS  Cites
BibTeX DOI 
368)Moirano, A., et al. (2023), Variability of the Auroral Footprint of Io Detected by Juno-JIRAM and Modeling of the Io Plasma Torus, Journal of Geophysical Research (Space Physics), 128, e2023JA031288, doi:10.1029/2023JA031288.
ADS  Cites
BibTeX DOI 
367)Montgomery, J., et al. (2023), Investigating the Occurrence of Kelvin-Helmholtz Instabilities at Jupiter’s Dawn Magnetopause, Geophysics Research Letters, 50, e2023GL102921, doi:10.1029/2023GL102921.
ADS  Cites
BibTeX DOI 
366)Xu, Y., et al. (2023), On the Relation Between Jupiter’s Aurora and the Dawnside Current Sheet, Geophysics Research Letters, 50, e2023GL104123, doi:10.1029/2023GL104123.
ADS  Cites
BibTeX DOI 
365)Brown, Shannon, et al. (2023), Microwave Observations of Ganymede’s Sub-Surface Ice: I. Ice Temperature and Structure, Journal of Geophysical Research (Planets), 128, e2022JE007609, doi:10.1029/2022JE007609.
ADS  Cites
BibTeX DOI 
364)Rabia, J., et al. (2023), Evidence for Non-Monotonic and Broadband Electron Distributions in the Europa Footprint Tail Revealed by Juno In Situ Measurements, Geophysics Research Letters, 50, e2023GL103131, doi:10.1029/2023GL103131.
ADS  Cites
BibTeX DOI 
363)Sarkango, Y., et al. (2023), Proton Equatorial Pitch Angle Distributions in Jupiter’s Inner Magnetosphere, Geophysics Research Letters, 50, e2023GL104374, doi:10.1029/2023GL104374.
ADS  Cites
BibTeX DOI 
362)Zhang, Zhimeng, et al. (2023), Microwave Observations of Ganymede’s Sub-surface Ice: 2. Reflected Radiation, Geophysics Research Letters, 50, e2022GL101565, doi:10.1029/2022GL101565.
ADS  Cites
BibTeX DOI 
361)Hue, V., et al. (2023), The Io, Europa, and Ganymede Auroral Footprints at Jupiter in the Ultraviolet: Positions and Equatorial Lead Angles, Journal of Geophysical Research (Space Physics), 128, e2023JA031363, doi:10.1029/2023JA031363.
ADS  Cites
BibTeX DOI 
360)Menietti, J.D., et al. (2023), Wave and Particle Analysis of Z-Mode and O-Mode Emission in the Jovian Inner Magnetosphere, Journal of Geophysical Research (Space Physics), 128, e2022JA031199, doi:10.1029/2022JA031199.
ADS  Cites
BibTeX DOI 
359)Sulaiman, A.H., et al. (2023), Poynting Fluxes, Field-Aligned Current Densities, and the Efficiency of the Io-Jupiter Electrodynamic Interaction, Geophysics Research Letters, 50, e2023GL103456, doi:10.1029/2023GL103456.
ADS  Cites
BibTeX DOI 
358)Blöcker, A., et al. (2023), Dipolarization Fronts in the Jovian Magnetotail: Statistical Survey of Ion Intensity Variations Using Juno Observations, Journal of Geophysical Research (Space Physics), 128, e2023JA031312, doi:10.1029/2023JA031312.
ADS  Cites
BibTeX DOI 
357)Lysak, R.L., et al. (2023), A Numerical Model for the Interaction of Io-Generated Alfvén Waves With Jupiter’s Magnetosphere and Ionosphere, Journal of Geophysical Research (Space Physics), 128, e2022JA031180, doi:10.1029/2022JA031180.
ADS  Cites
BibTeX DOI 
356)Mauk, B.H., et al. (2023), How Bi-Modal Are Jupiter’s Main Aurora Zones?, Journal of Geophysical Research (Space Physics), 128, e2022JA031237, doi:10.1029/2022JA031237.
ADS  Cites
BibTeX DOI 
355)Andrés, N., et al. (2023), Observation of Turbulent Magnetohydrodynamic Cascade in the Jovian Magnetosheath, Astrophysical Journal, 945, 8, doi:10.3847/1538-4357/acb7e0.
ADS  Cites
BibTeX DOI 
354)Artemyev, A.V., et al. (2023), Force-Free Current Sheets in the Jovian Magnetodisk: The Key Role of Electron Field-Aligned Anisotropy, Journal of Geophysical Research (Space Physics), 128, e2022JA031280, doi:10.1029/2022JA031280.
ADS  Cites
BibTeX DOI 
353)Clark, G., et al. (2023), Energetic proton acceleration by EMIC waves in Io’s footprint tail, Frontiers in Astronomy and Space Sciences, 10, 7, doi:10.3389/fspas.2023.1016345.
ADS  Cites
BibTeX DOI 
352)Galanti, E. and Kaspi, Y. and Guillot, T. (2023), The Shape of Jupiter and Saturn Based on Atmospheric Dynamics, Radio Occultations and Gravity Measurements, Geophysics Research Letters, 50, e2022GL102321, doi:10.1029/2022GL102321.
ADS  Cites
BibTeX DOI 
351)Li, W., et al. (2023), Driver of Energetic Electron Precipitation in the Vicinity of Ganymede, Geophysics Research Letters, 50, e2022GL101555, doi:10.1029/2022GL101555.
ADS  Cites
BibTeX DOI 
350)Migliorini, A., et al. (2023), First Observations of CH4 and H3+ Spatially Resolved Emission Layers at Jupiter Equator, as Seen by JIRAM/Juno, Journal of Geophysical Research (Planets), 128, e2022JE007509, doi:10.1029/2022JE007509.
ADS  Cites
BibTeX DOI 
349)Giles, Rohini S., et al. (2023), Enhanced C2H2 Absorption Within Jupiter’s Southern Auroral Oval From Juno UVS Observations, Journal of Geophysical Research (Planets), 128, e2022JE007610, doi:10.1029/2022JE007610.
ADS  Cites
BibTeX DOI 
348)Gu, W.D., et al. (2023), Hourly Periodic Variations of Ultralow-Frequency (ULF) Waves in Jupiter’s Magnetosheath, Journal of Geophysical Research (Planets), 128, e2022JE007625, doi:10.1029/2022JE007625.
ADS  Cites
BibTeX DOI 
347)Janalizadeh, Reza and Pasko, Victor P. (2023), Preliminary Modeling of Magnetized Sprite Streamers on Jupiter Following Juno’s Observations of Possible Transient Luminous Events, Journal of Geophysical Research (Space Physics), 128, e2022JA031009, doi:10.1029/2022JA031009.
ADS  Cites
BibTeX DOI 
346)Moeckel, Chris and de Pater, Imke and DeBoer, David (2023), Ammonia Abundance Derived from Juno MWR and VLA Observations of Jupiter, The Planetary Science Journal, 4, 25, doi:10.3847/PSJ/acaf6b.
ADS  Cites
BibTeX DOI 
345)Rensen, Frank, et al. (2023), The Deep Atmospheric Composition of Jupiter from Thermochemical Calculations Based on Galileo and Juno Data, Remote Sensing, 15, 841, doi:10.3390/rs15030841.
ADS  Cites
BibTeX DOI 
344)Schok, A.A., et al. (2023), Periodicities and Plasma Density Structure of Jupiter’s Dawnside Magnetosphere, Journal of Geophysical Research (Planets), 128, e2022JE007637, doi:10.1029/2022JE007637.
ADS  Cites
BibTeX DOI 
343)Wilson, R.J., et al. (2023), Internal and External Jovian Magnetic Fields: Community Code to Serve the Magnetospheres of the Outer Planets Community, Space Science Reviews, 219, 15, doi:10.1007/s11214-023-00961-3.
ADS  Cites
BibTeX DOI 
342)Gérard, J. -C., et al. (2023), H3+ cooling in the jovian aurora: Juno remote sensing observations and modeling, Icarus, 389, 115261, doi:10.1016/j.icarus.2022.115261.
ADS  Cites
BibTeX DOI 
341)Zambon, F., et al. (2023), Io Hot Spot Distribution Detected by Juno/JIRAM, Geophysics Research Letters, 50, e2022GL100597, doi:10.1029/2022GL100597.
ADS  Cites
BibTeX DOI 
340)Allegrini, F., et al. (2022), Plasma Observations During the 7 June 2021 Ganymede Flyby From the Jovian Auroral Distributions Experiment (JADE) on Juno, Geophysics Research Letters, 49, e2022GL098682, doi:10.1029/2022GL098682.
ADS  Cites
BibTeX DOI 
339)Becker, Heidi N., et al. (2022), Surface Features of Ganymede Revealed in Jupiter-Shine by Juno’s Stellar Reference Unit, Geophysics Research Letters, 49, e2022GL099139, doi:10.1029/2022GL099139.
ADS  Cites
BibTeX DOI 
338)Buccino, D.R., et al. (2022), Ganymede’s Ionosphere Observed by a Dual-Frequency Radio Occultation With Juno, Geophysics Research Letters, 49, e2022GL098420, doi:10.1029/2022GL098420.
ADS  Cites
BibTeX DOI 
337)Clark, G., et al. (2022), Energetic Charged Particle Observations During Juno’s Close Flyby of Ganymede, Geophysics Research Letters, 49, e2022GL098572, doi:10.1029/2022GL098572.
ADS  Cites
BibTeX DOI 
336)Duling, Stefan, et al. (2022), Ganymede MHD Model: Magnetospheric Context for Juno’s PJ34 Flyby, Geophysics Research Letters, 49, e2022GL101688, doi:10.1029/2022GL101688.
ADS  Cites
BibTeX DOI 
335)Ebert, R.W., et al. (2022), Evidence for Magnetic Reconnection at Ganymede’s Upstream Magnetopause During the PJ34 Juno Flyby, Geophysics Research Letters, 49, e2022GL099775, doi:10.1029/2022GL099775.
ADS  Cites
BibTeX DOI 
334)Gomez Casajus, L., et al. (2022), Gravity Field of Ganymede After the Juno Extended Mission, Geophysics Research Letters, 49, e2022GL099475, doi:10.1029/2022GL099475.
ADS  Cites
BibTeX DOI 
333)Greathouse, T.K., et al. (2022), UVS Observations of Ganymede’s Aurora During Juno Orbits 34 and 35, Geophysics Research Letters, 49, e2022GL099794, doi:10.1029/2022GL099794.
ADS  Cites
BibTeX DOI 
332)Hansen, C.J., et al. (2022), Juno’s Close Encounter With Ganymede – An Overview, Geophysics Research Letters, 49, e2022GL099285, doi:10.1029/2022GL099285.
ADS  Cites
BibTeX DOI 
331)Herceg, M., et al. (2022), Energetic electron lensing caused by Ganymede’s magnetic field, Planetary Space Science, 224, 105597, doi:10.1016/j.pss.2022.105597.
ADS  Cites
BibTeX DOI 
330)Janser, S., et al. (2022), Properties of Turbulent Alfvénic Fluctuations and Wave-Particle Interaction Associated With Io’s Footprint Tail, Journal of Geophysical Research (Space Physics), 127, e2022JA030675, doi:10.1029/2022JA030675.
ADS  Cites
BibTeX DOI 
329)Kamran, A., et al. (2022), Auroral Field-Aligned Current Signatures in Jupiter’s Magnetosphere: Juno Magnetic Field Observations and Physical Modeling, Journal of Geophysical Research (Space Physics), 127, e2022JA030431, doi:10.1029/2022JA030431.
ADS  Cites
BibTeX DOI 
328)King, Oliver and Fletcher, Leigh N. (2022), Global Modeling of Ganymede’s Surface Composition: Near-IR Mapping From VLT/SPHERE, Journal of Geophysical Research (Planets), 127, e2022JE007323, doi:10.1029/2022JE007323.
ADS  Cites
BibTeX DOI 
327)Kollmann, P., et al. (2022), Ganymede’s Radiation Cavity and Radiation Belts, Geophysics Research Letters, 49, e2022GL098474, doi:10.1029/2022GL098474.
ADS  Cites
BibTeX DOI 
326)Kurth, W.S., et al. (2022), Juno Plasma Wave Observations at Ganymede, Geophysics Research Letters, 49, e2022GL098591, doi:10.1029/2022GL098591.
ADS  Cites
BibTeX DOI 
325)Molyneux, P.M., et al. (2022), Ganymede’s UV Reflectance From Juno-UVS Data, Geophysics Research Letters, 49, e2022GL099532, doi:10.1029/2022GL099532.
ADS  Cites
BibTeX DOI 
324)Paranicas, C., et al. (2022), Energetic Charged Particle Fluxes Relevant to Ganymede’s Polar Region, Geophysics Research Letters, 49, e2022GL098077, doi:10.1029/2022GL098077.
ADS  Cites
BibTeX DOI 
323)Ravine, M.A., et al. (2022), Ganymede Observations by JunoCam on Juno Perijove 34, Geophysics Research Letters, 49, e2022GL099211, doi:10.1029/2022GL099211.
ADS  Cites
BibTeX DOI 
322)Romanelli, N., et al. (2022), Juno Magnetometer Observations at Ganymede: Comparisons With a Global Hybrid Simulation and Indications of Magnetopause Reconnection, Geophysics Research Letters, 49, e2022GL099545, doi:10.1029/2022GL099545.
ADS  Cites
BibTeX DOI 
321)Saur, Joachim, et al. (2022), Alternating North-South Brightness Ratio of Ganymede’s Auroral Ovals: Hubble Space Telescope Observations Around the Juno PJ34 Flyby, Geophysics Research Letters, 49, e2022GL098600, doi:10.1029/2022GL098600.
ADS  Cites
BibTeX DOI 
320)Valek, P.W., et al. (2022), In Situ Ion Composition Observations of Ganymede’s Outflowing Ionosphere, Geophysics Research Letters, 49, e2022GL100281, doi:10.1029/2022GL100281.
ADS  Cites
BibTeX DOI 
319)Vogt, Marissa F. and Bagenal, Fran and Bolton, Scott J. (2022), Magnetic Field Conditions Upstream of Ganymede, Journal of Geophysical Research (Space Physics), 127, e2022JA030497, doi:10.1029/2022JA030497.
ADS  Cites
BibTeX DOI 
318)Weber, Tristan, et al. (2022), Updated Spherical Harmonic Magnetic Field Moments of Ganymede From the Juno Flyby, Geophysics Research Letters, 49, e2022GL098633, doi:10.1029/2022GL098633.
ADS  Cites
BibTeX DOI 
317)Ingersoll, Andrew P., et al. (2022), Vorticity and divergence at scales down to 200 km within and around the polar cyclones of Jupiter, Nature Astronomy, 6, 1280-1286, doi:10.1038/s41550-022-01774-0.
ADS  Cites
BibTeX DOI 
316)Iñurrigarro, Peio, et al. (2022), Convective storms in closed cyclones in Jupiter: (II) numerical modeling, Icarus, 386, 115169, doi:10.1016/j.icarus.2022.115169.
ADS  Cites
BibTeX DOI 
315)Momoki, Naoya and Toh, Hiroaki (2022), Updated Model Parameters of Current Sheet and Magnetic Field in the Jovian Magnetosphere for Pre-Galileo, Galileo, and Juno Eras, Journal of Geophysical Research (Planets), 127, e2022JE007493, doi:10.1029/2022JE007493.
ADS  Cites
BibTeX DOI 
314)Moore, K.M., et al. (2022), Dynamo Simulations of Jupiter’s Magnetic Field: The Role of Stable Stratification and a Dilute Core, Journal of Geophysical Research (Planets), 127, e2022JE007479, doi:10.1029/2022JE007479.
ADS  Cites
BibTeX DOI 
313)Al Saati, S., et al. (2022), Magnetosphere-Ionosphere-Thermosphere Coupling Study at Jupiter Based on Juno’s First 30 Orbits and Modeling Tools, Journal of Geophysical Research (Space Physics), 127, e2022JA030586, doi:10.1029/2022JA030586.
ADS  Cites
BibTeX DOI 
312)Ma, X., et al. (2022), Jupiter’s Sheared Flow Unstable Magnetopause Boundary Observed by Juno, Journal of Geophysical Research (Space Physics), 127, e2022JA030719, doi:10.1029/2022JA030719.
ADS  Cites
BibTeX DOI 
311)Muñoz, J.R., et al. (2022), A Survey of Electron Conics at Jupiter Utilizing the JADE-E Data During Science Orbits 01, 03-30, Journal of Geophysical Research (Space Physics), 127, e2022JA030418, doi:10.1029/2022JA030418.
ADS  Cites
BibTeX DOI 
310)Yao, Z.H., et al. (2022), On the Relation Between Auroral Morphologies and Compression Conditions of Jupiter’s Magnetopause: Observations From Juno and the Hubble Space Telescope, Journal of Geophysical Research (Space Physics), 127, e2021JA029894, doi:10.1029/2021JA029894.
ADS  Cites
BibTeX DOI 
309)Mura, A., et al. (2022), Five Years of Observations of the Circumpolar Cyclones of Jupiter, Journal of Geophysical Research (Planets), 127, e07241, doi:10.1029/2022JE007241.
ADS  Cites
BibTeX DOI 
308)Bandyopadhyay, R., et al. (2022), Beta-Dependent Constraints on Ion Temperature Anisotropy in Jupiter’s Magnetosheath, Geophysics Research Letters, 49, e98053, doi:10.1029/2022GL098053.
ADS  Cites
BibTeX DOI 
307)Blöcker, A., et al. (2022), Plasmoids in the Jovian Magnetotail: Statistical Survey of Ion Acceleration Using Juno Observations, Journal of Geophysical Research (Space Physics), 127, e30460, doi:10.1029/2022JA030460.
ADS  Cites
BibTeX DOI 
306)Durante, Daniele, et al. (2022), Juno spacecraft gravity measurements provide evidence for normal modes of Jupiter, Nature Communications, 13, 4632, doi:10.1038/s41467-022-32299-9.
ADS  Cites
BibTeX DOI 
305)Gavriel, Nimrod and Kaspi, Yohai (2022), The Oscillatory Motion of Jupiter’s Polar Cyclones Results From Vorticity Dynamics, Geophysics Research Letters, 49, e98708, doi:10.1029/2022GL098708.
ADS  Cites
BibTeX DOI 
304)Militzer, Burkhard, et al. (2022), Juno Spacecraft Measurements of Jupiter’s Gravity Imply a Dilute Core, The Planetary Science Journal, 3, 185, doi:10.3847/PSJ/ac7ec8.
ADS  Cites
BibTeX DOI 
303)Salveter, A., et al. (2022), Jovian Auroral Electron Precipitation Budget—A Statistical Analysis of Diffuse, Mono-Energetic, and Broadband Auroral Electron Distributions, Journal of Geophysical Research (Space Physics), 127, e30224, doi:10.1029/2021JA030224.
ADS  Cites
BibTeX DOI 
302)Scarica, P., et al. (2022), Stability of the Jupiter Southern Polar Vortices Inspected Through Vorticity Using Juno/JIRAM Data, Journal of Geophysical Research (Planets), 127, e07159, doi:10.1029/2021JE007159.
ADS  Cites
BibTeX DOI 
301)Sharan, S., et al. (2022), The Internal Structure and Dynamics of Jupiter Unveiled by a High-Resolution Magnetic Field and Secular Variation Model, Geophysics Research Letters, 49, e98839, doi:10.1029/2022GL098839.
ADS  Cites
BibTeX DOI 
300)Shen, Xiao-Chen, et al. (2022), Energetic Proton Distributions in the Inner and Middle Magnetosphere of Jupiter Using Juno Observations, Geophysics Research Letters, 49, e99832, doi:10.1029/2022GL099832.
ADS  Cites
BibTeX DOI 
299)Sulaiman, A.H., et al. (2022), Jupiter’s Low-Altitude Auroral Zones: Fields, Particles, Plasma Waves, and Density Depletions, Journal of Geophysical Research (Space Physics), 127, e30334, doi:10.1029/2022JA030334.
ADS  Cites
BibTeX DOI 
298)Hueso, Ricardo, et al. (2022), Convective storms in closed cyclones in Jupiter’s South Temperate Belt: (I) observations, Icarus, 380, 114994, doi:10.1016/j.icarus.2022.114994.
ADS  Cites
BibTeX DOI 
297)Montgomery, J., et al. (2022), Investigating the Occurrence of Magnetic Reconnection at Jupiter’s Dawn Magnetopause During the Juno Era, Geophysics Research Letters, 49, e99141, doi:10.1029/2022GL099141.
ADS  Cites
BibTeX DOI 
296)Lorch, C.T.S., et al. (2022), Evidence of Alfvénic Activity in Jupiter’s Mid-To-High Latitude Magnetosphere, Journal of Geophysical Research (Space Physics), 127, e29853, doi:10.1029/2021JA029853.
ADS  Cites
BibTeX DOI 
295)Miguel, Y., et al. (2022), Jupiter’s inhomogeneous envelope, Astronomy and Astrophysics, 662, A18, doi:10.1051/0004-6361/202243207.
ADS  Cites
BibTeX DOI 
294)Bloxham, Jeremy, et al. (2022), Differential Rotation in Jupiter’s Interior Revealed by Simultaneous Inversion for the Magnetic Field and Zonal Flux Velocity, Journal of Geophysical Research (Planets), 127, e07138, doi:10.1029/2021JE007138.
ADS  Cites
BibTeX DOI 
293)Helled, Ravit, et al. (2022), Revelations on Jupiter’s formation, evolution and interior: Challenges from Juno results, Icarus, 378, 114937, doi:10.1016/j.icarus.2022.114937.
ADS  Cites
BibTeX DOI 
292)Mauk, B.H., et al. (2022), Loss of Energetic Ions Comprising the Ring Current Populations of Jupiter’s Middle and Inner Magnetosphere, Journal of Geophysical Research (Space Physics), 127, e30293, doi:10.1029/2022JA030293.
ADS  Cites
BibTeX DOI 
291)Szalay, J.R., et al. (2022), Closed Fluxtubes and Dispersive Proton Conics at Jupiter’s Polar Cap, Geophysics Research Letters, 49, e98741, doi:10.1029/2022GL098741.
ADS  Cites
BibTeX DOI 
290)Szalay, J.R., et al. (2022), Water-Group Pickup Ions From Europa-Genic Neutrals Orbiting Jupiter, Geophysics Research Letters, 49, e98111, doi:10.1029/2022GL098111.
ADS  Cites
BibTeX DOI 
289)Hue, V., et al. (2022), A Comprehensive Set of Juno In Situ and Remote Sensing Observations of the Ganymede Auroral Footprint, Geophysics Research Letters, 49, e96994, doi:10.1029/2021GL096994.
ADS  Cites
BibTeX DOI 
288)Lamy, L., et al. (2022), Determining the Beaming of Io Decametric Emissions: A Remote Diagnostic to Probe the Io-Jupiter Interaction, Journal of Geophysical Research (Space Physics), 127, e30160, doi:10.1029/2021JA030160.
ADS  Cites
BibTeX DOI 
287)Siegelman, Lia and Young, William R. and Ingersoll, Andrew P. (2022), Polar vortex crystals: Emergence and structure, Proceedings of the National Academy of Science, 119, e2120486119, doi:10.1073/pnas.2120486119.
ADS  Cites
BibTeX DOI 
286)Sarkango, Yash, et al. (2022), Properties of Ion-Inertial Scale Plasmoids Observed by the Juno Spacecraft in the Jovian Magnetotail, Journal of Geophysical Research (Space Physics), 127, e30181, doi:10.1029/2021JA03018110.1002/essoar.10509272.1.
ADS  Cites
BibTeX DOI 
285)Connerney, J.E.P., et al. (2022), A New Model of Jupiter’s Magnetic Field at the Completion of Juno’s Prime Mission, Journal of Geophysical Research (Planets), 127, e07055, doi:10.1029/2021JE007055.
ADS  Cites
BibTeX DOI 
284)Wang, Jian-zhao and Huo, Zhuo-xi and Zhang, Lei (2022), An empirical model of the current sheet in Jupiter’s magnetosphere, Planetary Space Science, 211, 105395, doi:10.1016/j.pss.2021.105395.
ADS  Cites
BibTeX DOI 
283)Nichols, J.D. and Cowley, S.W.H. (2022), Relation of Jupiter’s Dawnside Main Emission Intensity to Magnetospheric Currents During the Juno Mission, Journal of Geophysical Research (Space Physics), 127, e30040, doi:10.1029/2021JA030040.
ADS  Cites
BibTeX DOI 
282)Rogers, J.H., et al. (2022), Flow patterns of Jupiter’s south polar region, Icarus, 372, 114742, doi:10.1016/j.icarus.2021.114742.
ADS  Cites
BibTeX DOI 
281)Siegelman, Lia, et al. (2022), Moist convection drives an upscale energy transfer at Jovian high latitudes, Nature Physics, 18, 357-361, doi:10.1038/s41567-021-01458-y.
ADS  Cites
BibTeX DOI 
280)Buccino, D.R., et al. (2021), Performance of Earth Troposphere Calibration Measurements With the Advanced Water Vapor Radiometer for the Juno Gravity Science Investigation, Radio Science, 56, e07387, doi:10.1029/2021RS007387.
ADS  Cites
BibTeX DOI 
279)Duer, Keren, et al. (2021), Evidence for Multiple Ferrel-Like Cells on Jupiter, Geophysics Research Letters, 48, e95651, doi:10.1029/2021GL095651.
ADS  Cites
BibTeX DOI 
278)Ebert, R.W., et al. (2021), Simultaneous UV Images and High-Latitude Particle and Field Measurements During an Auroral Dawn Storm at Jupiter, Journal of Geophysical Research (Space Physics), 126, e29679, doi:10.1029/2021JA02967910.1002/essoar.10503105.2.
ADS  Cites
BibTeX DOI 
277)Greathouse, Thomas, et al. (2021), Local Time Dependence of Jupiter’s Polar Auroral Emissions Observed by Juno UVS, Journal of Geophysical Research (Planets), 126, e06954, doi:10.1029/2021JE00695410.1002/essoar.10507057.1.
ADS  Cites
BibTeX DOI 
276)Ingersoll, Andrew P., et al. (2021), Jupiter’s Overturning Circulation: Breaking Waves Take the Place of Solid Boundaries, Geophysics Research Letters, 48, e95756, doi:10.1029/2021GL095756.
ADS  Cites
BibTeX DOI 
275)Lysak, R.L., et al. (2021), The Jovian Ionospheric Alfvén Resonator and Auroral Particle Acceleration, Journal of Geophysical Research (Space Physics), 126, e29886, doi:10.1029/2021JA02988610.1002/essoar.10507765.1.
ADS  Cites
BibTeX DOI 
274)Ma, Q., et al. (2021), Energetic Electron Distributions Near the Magnetic Equator in the Jovian Plasma Sheet and Outer Radiation Belt Using Juno Observations, Geophysics Research Letters, 48, e95833, doi:10.1029/2021GL095833.
ADS  Cites
BibTeX DOI 
273)Moore, K.M., et al. (2021), Publisher Correction: Time variation of Jupiter’s internal magnetic field consistent with zonal wind advection, Nature Astronomy, 6, 288-288, doi:10.1038/s41550-021-01554-2.
ADS  Cites
BibTeX DOI 
272)Yoon, P.H., et al. (2021), Quasilinear Model of Jovian Whistler Mode Emission, Journal of Geophysical Research (Space Physics), 126, e29930, doi:10.1029/2021JA029930.
ADS  Cites
BibTeX DOI 
271)Bolton, S.J., et al. (2021), Microwave observations reveal the deep extent and structure of Jupiter’s atmospheric vortices, Science, 374, 968-972, doi:10.1126/science.abf1015.
ADS  Cites
BibTeX DOI 
270)Kulowski, Laura, et al. (2021), Investigating Barotropic Zonal Flow in Jupiter’s Deep Atmosphere Using Juno Gravitational Data, Journal of Geophysical Research (Planets), 126, e06795, doi:10.1029/2020JE006795.
ADS  Cites
BibTeX DOI 
269)Liu, Z. -Y., et al. (2021), Statistics on Jupiter’s Current Sheet With Juno Data: Geometry, Magnetic Fields and Energetic Particles, Journal of Geophysical Research (Space Physics), 126, e29710, doi:10.1029/2021JA029710.
ADS  Cites
BibTeX DOI 
268)Menietti, J.D., et al. (2021), Analysis of Whistler-Mode and Z-Mode Emission in the Juno Primary Mission, Journal of Geophysical Research (Space Physics), 126, e29885, doi:10.1029/2021JA029885.
ADS  Cites
BibTeX DOI 
267)Parisi, Marzia, et al. (2021), The depth of Jupiter’s Great Red Spot constrained by Juno gravity overflights, Science, 374, 964-968, doi:10.1126/science.abf1396.
ADS  Cites
BibTeX DOI 
266)Pensionerov, I.A., et al. (2021), Axially Asymmetric Steady State Model of Jupiter’s Magnetosphere-Ionosphere Coupling, Journal of Geophysical Research (Space Physics), 126, e29608, doi:10.1029/2021JA02960810.1002/essoar.10507161.2.
ADS  Cites
BibTeX DOI 
265)Fletcher, L.N., et al. (2021), Jupiter’s Temperate Belt/Zone Contrasts Revealed at Depth by Juno Microwave Observations, Journal of Geophysical Research (Planets), 126, e06858, doi:10.1029/2021JE00685810.1002/essoar.10506297.2.
ADS  Cites
BibTeX DOI 
264)Li, Wen, et al. (2021), Quantification of Diffuse Auroral Electron Precipitation Driven by Whistler Mode Waves at Jupiter, Geophysics Research Letters, 48, e95457, doi:10.1029/2021GL095457.
ADS  Cites
BibTeX DOI 
263)Louis, C.K., et al. (2021), Latitudinal Beaming of Jupiter’s Radio Emissions From Juno/Waves Flux Density Measurements, Journal of Geophysical Research (Space Physics), 126, e29435, doi:10.1029/2021JA02943510.1002/essoar.10506795.1.
ADS  Cites
BibTeX DOI 
262)Moirano, A., et al. (2021), Morphology of the Io Plasma Torus From Juno Radio Occultations, Journal of Geophysical Research (Space Physics), 126, e29190, doi:10.1029/2021JA029190.
ADS  Cites
BibTeX DOI 
261)Allegrini, F., et al. (2021), Electron Partial Density and Temperature Over Jupiter’s Main Auroral Emission Using Juno Observations, Journal of Geophysical Research (Space Physics), 126, e29426, doi:10.1029/2021JA029426.
ADS  Cites
BibTeX DOI 
260)Moirano, Alessandro, et al. (2021), Morphology of the Auroral Tail of Io, Europa, and Ganymede From JIRAM L-Band Imager, Journal of Geophysical Research (Space Physics), 126, e29450, doi:10.1029/2021JA029450.
ADS  Cites
BibTeX DOI 
259)Mousis, Olivier and Lunine, Jonathan I. and Aguichine, Artyom (2021), The Nature and Composition of Jupiter’s Building Blocks Derived from the Water Abundance Measurements by the Juno Spacecraft, Astrophysical Journal, 918, L23, doi:10.3847/2041-8213/ac1d50.
ADS  Cites
BibTeX DOI 
258)Sampl, Manfred, et al. (2021), Juno Waves High Frequency Antenna Properties, Radio Science, 56, e07184, doi:10.1029/2020RS00718410.1002/essoar.10506936.1.
ADS  Cites
BibTeX DOI 
257)Wang, Yuxian, et al. (2021), A Preliminary Study of Magnetosphere-Ionosphere-Thermosphere Coupling at Jupiter: Juno Multi-Instrument Measurements and Modeling Tools, Journal of Geophysical Research (Space Physics), 126, e29469, doi:10.1029/2021JA029469.
ADS  Cites
BibTeX DOI 
256)Bandyopadhyay, R., et al. (2021), Observation of Kolmogorov Turbulence in the Jovian Magnetosheath From JADE Data, Geophysics Research Letters, 48, e95006, doi:10.1029/2021GL095006.
ADS  Cites
BibTeX DOI 
255)Elliott, S.S., et al. (2021), The High-Latitude Extension of Jupiter’s Io Torus: Electron Densities Measured by Juno Waves, Journal of Geophysical Research (Space Physics), 126, e29195, doi:10.1029/2021JA029195.
ADS  Cites
BibTeX DOI 
254)Giles, Rohini S., et al. (2021), Meridional Variations of C2H2 in Jupiter’s Stratosphere From Juno UVS Observations, Journal of Geophysical Research (Planets), 126, e06928, doi:10.1029/2021JE006928.
ADS  Cites
BibTeX DOI 
253)Huscher, E., et al. (2021), Survey of Juno Observations in Jupiter’s Plasma Disk: Density, Journal of Geophysical Research (Space Physics), 126, e29446, doi:10.1029/2021JA029446.
ADS  Cites
BibTeX DOI 
252)Sulaiman, A.H., et al. (2021), Inferring Jovian Electron Densities Using Plasma Wave Spectra Obtained by the Juno/Waves Instrument, Journal of Geophysical Research (Space Physics), 126, e29263, doi:10.1029/2021JA029263.
ADS  Cites
BibTeX DOI 
251)Gavriel, Nimrod and Kaspi, Yohai (2021), The number and location of Jupiter’s circumpolar cyclones explained by vorticity dynamics, Nature Geoscience, 14, 559-563, doi:10.1038/s41561-021-00781-6.
ADS  Cites
BibTeX DOI 
250)Guo, R.L., et al. (2021), Jupiter’s Double-Arc Aurora as a Signature of Magnetic Reconnection: Simultaneous Observations From HST and Juno, Geophysics Research Letters, 48, e93964, doi:10.1029/2021GL093964.
ADS  Cites
BibTeX DOI 
249)Mura, A., et al. (2021), Oscillations and Stability of the Jupiter Polar Cyclones, Geophysics Research Letters, 48, e94235, doi:10.1029/2021GL094235.
ADS  Cites
BibTeX DOI 
248)Yao, Zhonghua, et al. (2021), Revealing the source of Jupiter’s x-ray auroral flares, Science Advances, 7, eabf0851, doi:10.1126/sciadv.abf0851.
ADS  Cites
BibTeX DOI 
247)Becker, Heidi N., et al. (2021), High Latitude Zones of GeV Heavy Ions at the Inner Edge of Jupiter’s Relativistic Electron Belt, Journal of Geophysical Research (Planets), 126, e06772, doi:10.1029/2020JE006772.
ADS  Cites
BibTeX DOI 
246)Galanti, Eli, et al. (2021), Constraints on the Latitudinal Profile of Jupiter’s Deep Jets, Geophysics Research Letters, 48, e92912, doi:10.1029/2021GL09291210.1002/essoar.10506285.1.
ADS  Cites
BibTeX DOI 
245)Grassi, Davide, et al. (2021), On the clouds and ammonia in Jupiter’s upper troposphere from Juno JIRAM reflectivity observations, Monthly Notices of the RAS, 503, 4892-4907, doi:10.1093/mnras/stab740.
ADS  Cites
BibTeX DOI 
244)Notaro, Virginia, et al. (2021), Determination of Jupiter’s Mass from Juno Radio Tracking Data, Journal of Guidance Control Dynamics, 44, 1062-1067, doi:10.2514/1.G005311.
ADS  Cites
BibTeX DOI 
243)Paranicas, C., et al. (2021), Energy Spectra Near Ganymede From Juno Data, Geophysics Research Letters, 48, e93021, doi:10.1029/2021GL093021.
ADS  Cites
BibTeX DOI 
242)Wang, Jian-zhao and Huo, Zhuo-xi and Zhang, Lei (2021), A Modular Model of Jupiter’s Magnetospheric Magnetic Field Based on Juno Data, Journal of Geophysical Research (Space Physics), 126, e29085, doi:10.1029/2020JA02908510.1002/essoar.10506065.1.
ADS  Cites
BibTeX DOI 
241)Gérard, J. -C., et al. (2021), Variability and Hemispheric Symmetry of the Pedersen Conductance in the Jovian Aurora, Journal of Geophysical Research (Space Physics), 126, e28949, doi:10.1029/2020JA028949.
ADS  Cites
BibTeX DOI 
240)Swithenbank-Harris, B.G., et al. (2021), Simultaneous Observation of an Auroral Dawn Storm With the Hubble Space Telescope and Juno, Journal of Geophysical Research (Space Physics), 126, e28717, doi:10.1029/2020JA028717.
ADS  Cites
BibTeX DOI 
239)Sánchez-Lavega, A., et al. (2021), Jupiter’s Great Red Spot: Strong Interactions With Incoming Anticyclones in 2019, Journal of Geophysical Research (Planets), 126, e06686, doi:10.1029/2020JE006686.
ADS  Cites
BibTeX DOI 
238)Bonfond, B., et al. (2021), Are Dawn Storms Jupiter’s Auroral Substorms?, AGU Advances, 2, e00275, doi:10.1029/2020AV00027510.1002/essoar.10502511.2.
ADS  Cites
BibTeX DOI 
237)Giles, Rohini S., et al. (2021), Detection of a Bolide in Jupiter’s Atmosphere With Juno UVS, Geophysics Research Letters, 48, e91797, doi:10.1029/2020GL091797.
ADS  Cites
BibTeX DOI 
236)Hue, V., et al. (2021), Detection and Characterization of Circular Expanding UV Emissions Observed in Jupiter’s Polar Auroral Regions, Journal of Geophysical Research (Space Physics), 126, e28971, doi:10.1029/2020JA028971.
ADS  Cites
BibTeX DOI 
235)Jorgensen, J.L., et al. (2021), Distribution of Interplanetary Dust Detected by the Juno Spacecraft and Its Contribution to the Zodiacal Light, Journal of Geophysical Research (Planets), 126, e06509, doi:10.1029/2020JE006509.
ADS  Cites
BibTeX DOI 
234)Mishra, Ishan, et al. (2021), Bayesian analysis of Juno/JIRAM’s NIR observations of Europa, Icarus, 357, 114215, doi:10.1016/j.icarus.2020.114215.
ADS  Cites
BibTeX DOI 
233)Pan, Dong-Xiao, et al. (2021), Ultralow Frequency Waves in Driving Jovian Aurorae Revealed by Observations From HST and Juno, Geophysics Research Letters, 48, e91579, doi:10.1029/2020GL091579.
ADS  Cites
BibTeX DOI 
232)Park, Ryan S., et al. (2021), The JPL Planetary and Lunar Ephemerides DE440 and DE441, Astronomical Journal, 161, 105, doi:10.3847/1538-3881/abd414.
ADS  Cites
BibTeX DOI 
231)Aglyamov, Yury S., et al. (2021), Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter, Journal of Geophysical Research (Planets), 126, e06504, doi:10.1029/2020JE006504.
ADS  Cites
BibTeX DOI 
230)Haewsantati, K., et al. (2021), Morphology of Jupiter’s Polar Auroral Bright Spot Emissions via Juno UVS Observations, Journal of Geophysical Research (Space Physics), 126, e28586, doi:10.1029/2020JA02858610.1002/essoar.10504085.1.
ADS  Cites
BibTeX DOI 
229)Menietti, J.D., et al. (2021), Low Latitude Whistler Mode and Higher Latitude Z Mode Emission at Jupiter Observed by Juno, Journal of Geophysical Research (Space Physics), 126, e28742, doi:10.1029/2020JA028742.
ADS  Cites
BibTeX DOI 
228)Phipps, Phillip and Bagenal, Fran (2021), Centrifugal Equator in Jupiter’s Plasma Sheet, Journal of Geophysical Research (Space Physics), 126, e28713, doi:10.1029/2020JA028713.
ADS  Cites
BibTeX DOI 
227)Sarkango, Yash, et al. (2021), Juno Observations of Ion-Inertial Scale Flux Ropes in the Jovian Magnetotail, Geophysics Research Letters, 48, e89721, doi:10.1029/2020GL089721.
ADS  Cites
BibTeX DOI 
226)Szalay, J.R., et al. (2021), Proton Outflow Associated With Jupiter’s Auroral Processes, Geophysics Research Letters, 48, e91627, doi:10.1029/2020GL091627.
ADS  Cites
BibTeX DOI 
225)Clark, G., et al. (2020), Energetic Proton Acceleration Associated With Io’s Footprint Tail, Geophysics Research Letters, 47, e90839, doi:10.1029/2020GL09083910.1002/essoar.10504411.1.
ADS  Cites
BibTeX DOI 
224)Herceg, M., et al. (2020), Thermoelastic Response of the Juno Spacecraft’s Solar Array/Magnetometer Boom and Its Applicability to Improved Magnetic Field Investigation, Earth and Space Science, 7, 01338, doi:10.1029/2020EA001338.
ADS  Cites
BibTeX DOI 
223)Mauk, B.H., et al. (2020), Energetic Neutral Atoms From Jupiter’s Polar Regions, Journal of Geophysical Research (Space Physics), 125, e28697, doi:10.1029/2020JA028697.
ADS  Cites
BibTeX DOI 
222)Mura, A., et al. (2020), Infrared Observations of Ganymede From the Jovian InfraRed Auroral Mapper on Juno, Journal of Geophysical Research (Planets), 125, e06508, doi:10.1029/2020JE006508.
ADS  Cites
BibTeX DOI 
221)Pollock, C.J., et al. (2020), A Persistent Depletion of Plasma Ions Within Jupiter’s Auroral Polar Caps, Geophysics Research Letters, 47, e90764, doi:10.1029/2020GL090764.
ADS  Cites
BibTeX DOI 
220)Bonfond, Bertrand and Yao, Zhonghua and Grodent, Denis (2020), Six Pieces of Evidence Against the Corotation Enforcement Theory to Explain the Main Aurora at Jupiter, Journal of Geophysical Research (Space Physics), 125, e28152, doi:10.1029/2020JA028152.
ADS  Cites
BibTeX DOI 
219)Giles, Rohini S., et al. (2020), Possible Transient Luminous Events Observed in Jupiter’s Upper Atmosphere, Journal of Geophysical Research (Planets), 125, e06659, doi:10.1029/2020JE006659.
ADS  Cites
BibTeX DOI 
218)Oyafuso, Fabiano, et al. (2020), Angular Dependence and Spatial Distribution of Jupiter’s Centimeter-Wave Thermal Emission From Juno’s Microwave Radiometer, Earth and Space Science, 7, e01254, doi:10.1029/2020EA001254.
ADS  Cites
BibTeX DOI 
217)Parisi, Marzia, et al. (2020), Resolving the Latitudinal Short-Scale Gravity Field of Jupiter Using Slepian Functions, Journal of Geophysical Research (Planets), 125, e06416, doi:10.1029/2020JE006416.
ADS  Cites
BibTeX DOI 
216)Sulaiman, A.H., et al. (2020), Wave-Particle Interactions Associated With Io’s Auroral Footprint: Evidence of Alfvén, Ion Cyclotron, and Whistler Modes, Geophysics Research Letters, 47, e88432, doi:10.1029/2020GL088432.
ADS  Cites
BibTeX DOI 
215)Tosi, F., et al. (2020), Mapping Io’s Surface Composition With Juno/JIRAM, Journal of Geophysical Research (Planets), 125, e06522, doi:10.1029/2020JE006522.
ADS  Cites
BibTeX DOI 
214)Connerney, J.E.P., et al. (2020), A Jovian Magnetodisc Model for the Juno Era, Journal of Geophysical Research (Space Physics), 125, e28138, doi:10.1029/2020JA028138.
ADS  Cites
BibTeX DOI 
213)Louis, C.K., et al. (2020), Ganymede-Induced Decametric Radio Emission: In Situ Observations and Measurements by Juno, Geophysics Research Letters, 47, e90021, doi:10.1029/2020GL09002110.1002/essoar.10503834.1.
ADS  Cites
BibTeX DOI 
212)Allegrini, F., et al. (2020), First Report of Electron Measurements During a Europa Footprint Tail Crossing by Juno, Geophysics Research Letters, 47, e89732, doi:10.1029/2020GL089732.
ADS  Cites
BibTeX DOI 
211)Clark, G., et al. (2020), Heavy Ion Charge States in Jupiter’s Polar Magnetosphere Inferred From Auroral Megavolt Electric Potentials, Journal of Geophysical Research (Space Physics), 125, e28052, doi:10.1029/2020JA028052.
ADS  Cites
BibTeX DOI 
210)Collier, Michael R., et al. (2020), A K-Means Clustering Analysis of the Jovian and Terrestrial Magnetopauses: A Technique to Classify Global Magnetospheric Behavior, Journal of Geophysical Research (Planets), 125, e06366, doi:10.1029/2019JE006366.
ADS  Cites
BibTeX DOI 
209)Hodges, Amorée., et al. (2020), Observations and Electron Density Retrievals of Jupiter’s Discrete Auroral Arcs Using the Juno Microwave Radiometer, Journal of Geophysical Research (Planets), 125, e06293, doi:10.1029/2019JE006293.
ADS  Cites
BibTeX DOI 
208)Szalay, J.R., et al. (2020), A New Framework to Explain Changes in Io’s Footprint Tail Electron Fluxes, Geophysics Research Letters, 47, e89267, doi:10.1029/2020GL089267.
ADS  Cites
BibTeX DOI 
207)Zhang, Zhimeng, et al. (2020), Residual Study: Testing Jupiter Atmosphere Models Against Juno MWR Observations, Earth and Space Science, 7, e01229, doi:10.1029/2020EA001229.
ADS  Cites
BibTeX DOI 
206)Becker, Heidi N., et al. (2020), Small lightning flashes from shallow electrical storms on Jupiter, Nature, 584, 55-58, doi:10.1038/s41586-020-2532-1.
ADS  Cites
BibTeX DOI 
205)Buccino, Dustin R., et al. (2020), Updated Equipotential Shapes of Jupiter and Saturn Using Juno and Cassini Grand Finale Gravity Science Measurements, Journal of Geophysical Research (Planets), 125, e06354, doi:10.1029/2019JE006354.
ADS  Cites
BibTeX DOI 
204)Duer, Keren and Galanti, Eli and Kaspi, Yohai (2020), The Range of Jupiter’s Flow Structures that Fit the Juno Asymmetric Gravity Measurements, Journal of Geophysical Research (Planets), 125, e06292, doi:10.1029/2019JE006292.
ADS  Cites
BibTeX DOI 
203)Fletcher, L.N., et al. (2020), Jupiter’s Equatorial Plumes and Hot Spots: Spectral Mapping from Gemini/TEXES and Juno/MWR, Journal of Geophysical Research (Planets), 125, e06399, doi:10.1029/2020JE00639910.1002/essoar.10502118.1.
ADS  Cites
BibTeX DOI 
202)Guillot, Tristan, et al. (2020), Storms and the Depletion of Ammonia in Jupiter: II. Explaining the Juno Observations, Journal of Geophysical Research (Planets), 125, e06404, doi:10.1029/2020JE00640410.1002/essoar.10502179.1.
ADS  Cites
BibTeX DOI 
201)Guillot, Tristan, et al. (2020), Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of “Mushballs”, Journal of Geophysical Research (Planets), 125, e06403, doi:10.1029/2020JE00640310.1002/essoar.10502154.1.
ADS  Cites
BibTeX DOI 
200)Gérard, J. -C., et al. (2020), Spatial Distribution of the Pedersen Conductance in the Jovian Aurora From Juno-UVS Spectral Images, Journal of Geophysical Research (Space Physics), 125, e28142, doi:10.1029/2020JA028142.
ADS  Cites
BibTeX DOI 
199)Imai, Masafumi, et al. (2020), High-Spatiotemporal Resolution Observations of Jupiter Lightning-Induced Radio Pulses Associated With Sferics and Thunderstorms, Geophysics Research Letters, 47, e88397, doi:10.1029/2020GL088397.
ADS  Cites
BibTeX DOI 
198)Li, W., et al. (2020), Global Distribution of Whistler Mode Waves in Jovian Inner Magnetosphere, Geophysics Research Letters, 47, e88198, doi:10.1029/2020GL088198.
ADS  Cites
BibTeX DOI 
197)Ma, Q., et al. (2020), Energetic Electron Scattering due to Whistler Mode Chorus Waves Using Realistic Magnetic Field and Density Models in Jupiter’s Magnetosphere, Journal of Geophysical Research (Space Physics), 125, e27968, doi:10.1029/2020JA027968.
ADS  Cites
BibTeX DOI 
196)Nichols, J.D., et al. (2020), An Enhancement of Jupiter’s Main Auroral Emission and Magnetospheric Currents, Journal of Geophysical Research (Space Physics), 125, e27904, doi:10.1029/2020JA027904.
ADS  Cites
BibTeX DOI 
195)Phipps, Phillip H., et al. (2020), Where Is the Io Plasma Torus? A Comparison of Observations by Juno Radio Occultations to Predictions From Jovian Magnetic Field Models, Journal of Geophysical Research (Space Physics), 125, e27633, doi:10.1029/2019JA027633.
ADS  Cites
BibTeX DOI 
194)Ranquist, D.A. and Bagenal, F. and Wilson, R.J. (2020), Polar Flattening of Jupiter’s Magnetosphere, Geophysics Research Letters, 47, e89818, doi:10.1029/2020GL089818.
ADS  Cites
BibTeX DOI 
193)Visscher, Channon (2020), Mapping Jupiter’s Mischief, Journal of Geophysical Research (Planets), 125, e06526, doi:10.1029/2020JE006526.
ADS  Cites
BibTeX DOI 
192)Yao, Z.H., et al. (2020), Reconnection- and Dipolarization-Driven Auroral Dawn Storms and Injections, Journal of Geophysical Research (Space Physics), 125, e27663, doi:10.1029/2019JA02766310.1002/essoar.10503657.1.
ADS  Cites
BibTeX DOI 
191)Zhang, X. -J., et al. (2020), Plasma Sheet Boundary Layer in Jupiter’s Magnetodisk as Observed by Juno, Journal of Geophysical Research (Space Physics), 125, e27957, doi:10.1029/2020JA027957.
ADS  Cites
BibTeX DOI 
190)Kotsiaros, S. and Connerney, J.E.P. and Martos, Y.M. (2020), Analysis of Eddy Current Generation on the Juno Spacecraft in Jupiter’s Magnetosphere, Earth and Space Science, 7, e01061, doi:10.1029/2019EA001061.
ADS  Cites
BibTeX DOI 
189)Martos, Yasmina M., et al. (2020), Juno Reveals New Insights Into Io-Related Decameter Radio Emissions, Journal of Geophysical Research (Planets), 125, e06415, doi:10.1029/2020JE006415.
ADS  Cites
BibTeX DOI 
188)Moriconi, M.L., et al. (2020), Turbulence Power Spectra in Regions Surrounding Jupiter’s South Polar Cyclones From Juno/JIRAM, Journal of Geophysical Research (Planets), 125, e06096, doi:10.1029/2019JE006096.
ADS  Cites
BibTeX DOI 
187)Orton, Glenn S., et al. (2020), A Survey of Small-Scale Waves and Wave-Like Phenomena in Jupiter’s Atmosphere Detected by JunoCam, Journal of Geophysical Research (Planets), 125, e06369, doi:10.1029/2019JE00636910.1002/essoar.10502999.1.
ADS  Cites
BibTeX DOI 
186)Adriani, A., et al. (2020), Two-Year Observations of the Jupiter Polar Regions by JIRAM on Board Juno, Journal of Geophysical Research (Planets), 125, e06098, doi:10.1029/2019JE006098.
ADS  Cites
BibTeX DOI 
185)Elliott, S.S., et al. (2020), The Generation of Upward-Propagating Whistler Mode Waves by Electron Beams in the Jovian Polar Regions, Journal of Geophysical Research (Space Physics), 125, e27868, doi:10.1029/2020JA027868.
ADS  Cites
BibTeX DOI 
184)Kaspi, Yohai, et al. (2020), Comparison of the Deep Atmospheric Dynamics of Jupiter and Saturn in Light of the Juno and Cassini Gravity Measurements, Space Science Reviews, 216, 84, doi:10.1007/s11214-020-00705-7.
ADS  Cites
BibTeX DOI 
183)Valek, P.W., et al. (2020), Juno In Situ Observations Above the Jovian Equatorial Ionosphere, Geophysics Research Letters, 47, e87623, doi:10.1029/2020GL087623.
ADS  Cites
BibTeX DOI 
182)Ye, S. -Y., et al. (2020), Juno Waves Detection of Dust Impacts Near Jupiter, Journal of Geophysical Research (Planets), 125, e06367, doi:10.1029/2019JE006367.
ADS  Cites
BibTeX DOI 
181)Artemyev, A.V., et al. (2020), Juno Observations of Heavy Ion Energization During Transient Dipolarizations in Jupiter Magnetotail, Journal of Geophysical Research (Space Physics), 125, e27933, doi:10.1029/2020JA027933.
ADS  Cites
BibTeX DOI 
180)Bagenal, Fran and Dols, Vincent (2020), The Space Environment of Io and Europa, Journal of Geophysical Research (Space Physics), 125, e27485, doi:10.1029/2019JA027485.
ADS  Cites
BibTeX DOI 
179)Kulowski, Laura and Cao, Hao and Bloxham, Jeremy (2020), Contributions to Jupiter’s Gravity Field From Dynamics in the Dynamo Region, Journal of Geophysical Research (Planets), 125, e06165, doi:10.1029/2019JE006165.
ADS  Cites
BibTeX DOI 
178)Mauk, B.H., et al. (2020), Juno Energetic Neutral Atom (ENA) Remote Measurements of Magnetospheric Injection Dynamics in Jupiter’s Io Torus Regions, Journal of Geophysical Research (Space Physics), 125, e27964, doi:10.1029/2020JA027964.
ADS  Cites
BibTeX DOI 
177)Mura, A., et al. (2020), Infrared observations of Io from Juno, Icarus, 341, 113607, doi:10.1016/j.icarus.2019.113607.
ADS  Cites
BibTeX DOI 
176)Wibisono, A.D., et al. (2020), Temporal and Spectral Studies by XMM-Newton of Jupiter’s X-ray Auroras During a Compression Event, Journal of Geophysical Research (Space Physics), 125, e27676, doi:10.1029/2019JA027676.
ADS  Cites
BibTeX DOI 
175)Allegrini, F., et al. (2020), Energy Flux and Characteristic Energy of Electrons Over Jupiter’s Main Auroral Emission, Journal of Geophysical Research (Space Physics), 125, e27693, doi:10.1029/2019JA027693.
ADS  Cites
BibTeX DOI 
174)Grassi, D., et al. (2020), On the Spatial Distribution of Minor Species in Jupiter’s Troposphere as Inferred From Juno JIRAM Data, Journal of Geophysical Research (Planets), 125, e06206, doi:10.1029/2019JE006206.
ADS  Cites
BibTeX DOI 
173)Kim, Thomas K., et al. (2020), Survey of Ion Properties in Jupiter’s Plasma Sheet: Juno JADE-I Observations, Journal of Geophysical Research (Space Physics), 125, e27696, doi:10.1029/2019JA027696.
ADS  Cites
BibTeX DOI 
172)Nerney, Edward G. and Bagenal, Fran (2020), Combining UV Spectra and Physical Chemistry to Constrain the Hot Electron Fraction in the Io Plasma Torus, Journal of Geophysical Research (Space Physics), 125, e27458, doi:10.1029/2019JA027458.
ADS  Cites
BibTeX DOI 
171)Weigt, D.M., et al. (2020), Chandra Observations of Jupiter’s X-ray Auroral Emission During Juno Apojove 2017, Journal of Geophysical Research (Planets), 125, e06262, doi:10.1029/2019JE006262.
ADS  Cites
BibTeX DOI 
170)Mauk, B.H., et al. (2020), Energetic Particles and Acceleration Regions Over Jupiter’s Polar Cap and Main Aurora: A Broad Overview, Journal of Geophysical Research (Space Physics), 125, e27699, doi:10.1029/2019JA027699.
ADS  Cites
BibTeX DOI 
169)Vogt, Marissa F., et al. (2020), Magnetotail Reconnection at Jupiter: A Survey of Juno Magnetic Field Observations, Journal of Geophysical Research (Space Physics), 125, e27486, doi:10.1029/2019JA027486.
ADS  Cites
BibTeX DOI 
168)Durante, D., et al. (2020), Jupiter’s Gravity Field Halfway Through the Juno Mission, Geophysics Research Letters, 47, e86572, doi:10.1029/2019GL086572.
ADS  Cites
BibTeX DOI 
167)Houston, S.J., et al. (2020), Jovian Auroral Ion Precipitation: X-Ray Production From Oxygen and Sulfur Precipitation, Journal of Geophysical Research (Space Physics), 125, e27007, doi:10.1029/2019JA027007.
ADS  Cites
BibTeX DOI 
166)Kim, Thomas K., et al. (2020), Method to Derive Ion Properties From Juno JADE Including Abundance Estimates for O+ and S2+, Journal of Geophysical Research (Space Physics), 125, e26169, doi:10.1029/2018JA026169.
ADS  Cites
BibTeX DOI 
165)Li, Cheng, et al. (2020), The water abundance in Jupiter’s equatorial zone, Nature Astronomy, 4, 609-616, doi:10.1038/s41550-020-1009-3.
ADS  Cites
BibTeX DOI 
164)Parisi, Marzia, et al. (2020), A mascon approach to estimating the depth of Jupiter’s Great Red Spot with Juno gravity measurements, Planetary Space Science, 181, 104781, doi:10.1016/j.pss.2019.104781.
ADS  Cites
BibTeX DOI 
163)Szalay, J.R., et al. (2020), Alfvénic Acceleration Sustains Ganymede’s Footprint Tail Aurora, Geophysics Research Letters, 47, e86527, doi:10.1029/2019GL086527.
ADS  Cites
BibTeX DOI 
162)Iñurrigarro, P., et al. (2020), Observations and numerical modelling of a convective disturbance in a large-scale cyclone in Jupiter’s South Temperate Belt, Icarus, 336, 113475, doi:10.1016/j.icarus.2019.113475.
ADS  Cites
BibTeX DOI 
161)Szalay, J.R., et al. (2020), Proton Acceleration by Io’s Alfvénic Interaction, Journal of Geophysical Research (Space Physics), 125, e27314, doi:10.1029/2019JA027314.
ADS  Cites
BibTeX DOI 
160)Tabataba-Vakili, F., et al. (2020), Long-term tracking of circumpolar cyclones on Jupiter from polar observations with JunoCam, Icarus, 335, 113405, doi:10.1016/j.icarus.2019.113405.
ADS  Cites
BibTeX DOI 
159)Durante, D. (2019), Effect of Juno’s Solar Panel Bending on Gravity Measurements, Journal of Guidance Control Dynamics, 42, 2694-2699, doi:10.2514/1.G004503.
ADS  Cites
BibTeX DOI 
158)Kita, H., et al. (2019), Jovian UV Aurora’s Response to the Solar Wind: Hisaki EXCEED and Juno Observations, Journal of Geophysical Research (Space Physics), 124, 10, doi:10.1029/2019JA026997.
ADS  Cites
BibTeX DOI 
157)Paranicas, C., et al. (2019), Io’s Effect on Energetic Charged Particles as Seen in Juno Data, Geophysics Research Letters, 46, 13, doi:10.1029/2019GL085393.
ADS  Cites
BibTeX DOI 
156)Gérard, J. -C., et al. (2019), Contemporaneous Observations of Jovian Energetic Auroral Electrons and Ultraviolet Emissions by the Juno Spacecraft, Journal of Geophysical Research (Space Physics), 124, 8298-8317, doi:10.1029/2019JA026862.
ADS  Cites
BibTeX DOI 
155)Louis, C.K., et al. (2019), Jovian Auroral Radio Sources Detected In Situ by Juno/Waves: Comparisons With Model Auroral Ovals and Simultaneous HST FUV Images, Geophysics Research Letters, 46, 11, doi:10.1029/2019GL084799.
ADS  Cites
BibTeX DOI 
154)Ranquist, D.A., et al. (2019), Survey of Jupiter’s Dawn Magnetosheath Using Juno, Journal of Geophysical Research (Space Physics), 124, 9106-9123, doi:10.1029/2019JA027382.
ADS  Cites
BibTeX DOI 
153)Serra, Daniele, et al. (2019), A solution of Jupiter’s gravitational field from Juno data with the ORBIT14 software, Monthly Notices of the RAS, 490, 766-772, doi:10.1093/mnras/stz2657.
ADS  Cites
BibTeX DOI 
152)Swithenbank-Harris, B.G. and Nichols, J.D. and Bunce, E.J. (2019), Jupiter’s Dark Polar Region as Observed by the Hubble Space Telescope During the Juno Approach Phase, Journal of Geophysical Research (Space Physics), 124, 9094-9105, doi:10.1029/2019JA027306.
ADS  Cites
BibTeX DOI 
151)Yao, Z.H., et al. (2019), On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux: Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki, Geophysics Research Letters, 46, 11, doi:10.1029/2019GL084201.
ADS  Cites
BibTeX DOI 
150)Notaro, Virginia and Durante, Daniele and Iess, Luciano (2019), On the determination of Jupiter’s satellite-dependent Love numbers from Juno gravity data, Planetary Space Science, 175, 34-40, doi:10.1016/j.pss.2019.06.001.
ADS  Cites
BibTeX DOI 
149)Westlake, J.H., et al. (2019), High-Energy (>10 MeV) Oxygen and Sulfur Ions Observed at Jupiter From Pulse Width Measurements of the JEDI Sensors, Geophysics Research Letters, 46, 10, doi:10.1029/2019GL083842.
ADS  Cites
BibTeX DOI 
148)Migliorini, A., et al. (2019), H3+ characteristics in the Jupiter atmosphere as observed at limb with Juno/JIRAM, Icarus, 329, 132-139, doi:10.1016/j.icarus.2019.04.003.
ADS  Cites
BibTeX DOI 
147)Filacchione, Gianrico, et al. (2019), Serendipitous infrared observations of Europa by Juno/JIRAM, Icarus, 328, 1-13, doi:10.1016/j.icarus.2019.03.022.
ADS  Cites
BibTeX DOI 
146)Haggerty, D.K., et al. (2019), Jovian Injections Observed at High Latitude, Geophysics Research Letters, 46, 9397-9404, doi:10.1029/2019GL083442.
ADS  Cites
BibTeX DOI 
145)Valek, P.W., et al. (2019), Jovian High-Latitude Ionospheric Ions: Juno In Situ Observations, Geophysics Research Letters, 46, 8663-8670, doi:10.1029/2019GL084146.
ADS  Cites
BibTeX DOI 
144)Duer, Keren and Galanti, Eli and Kaspi, Yohai (2019), Analysis of Jupiter’s Deep Jets Combining Juno Gravity and Time-varying Magnetic Field Measurements, Astrophysical Journal, 879, L22, doi:10.3847/2041-8213/ab288e.
ADS  Cites
BibTeX DOI 
143)Gershman, Daniel J., et al. (2019), Alfvénic Fluctuations Associated With Jupiter’s Auroral Emissions, Geophysics Research Letters, 46, 7157-7165, doi:10.1029/2019GL082951.
ADS  Cites
BibTeX DOI 
142)Hue, V., et al. (2019), Juno-UVS Observation of the Io Footprint During Solar Eclipse, Journal of Geophysical Research (Space Physics), 124, 5184-5199, doi:10.1029/2018JA026431.
ADS  Cites
BibTeX DOI 
141)Kotsiaros, Stavros, et al. (2019), Birkeland currents in Jupiter’s magnetosphere observed by the polar-orbiting Juno spacecraft, Nature Astronomy, 3, 904-909, doi:10.1038/s41550-019-0819-7.
ADS  Cites
BibTeX DOI 
140)Mauk, B.H., et al. (2019), Investigation of Mass-/Charge-Dependent Escape of Energetic Ions Across the Magnetopauses of Earth and Jupiter, Journal of Geophysical Research (Space Physics), 124, 5539-5567, doi:10.1029/2019JA026626.
ADS  Cites
BibTeX DOI 
139)Phipps, Phillip H., et al. (2019), Variations in the Density Distribution of the Io Plasma Torus as Seen by Radio Occultations on Juno Perijoves 3, 6, and 8, Journal of Geophysical Research (Space Physics), 124, 5200-5221, doi:10.1029/2018JA026297.
ADS  Cites
BibTeX DOI 
138)Imai, Masafumi, et al. (2019), Evidence for low density holes in Jupiter’s ionosphere, Nature Communications, 10, 2751, doi:10.1038/s41467-019-10708-w.
ADS  Cites
BibTeX DOI 
137)Moore, K.M., et al. (2019), Time variation of Jupiter’s internal magnetic field consistent with zonal wind advection, Nature Astronomy, 3, 730-735, doi:10.1038/s41550-019-0772-5.
ADS  Cites
BibTeX DOI 
136)Galanti, Eli, et al. (2019), Determining the Depth of Jupiter’s Great Red Spot with Juno: A Slepian Approach, Astrophysical Journal, 874, L24, doi:10.3847/2041-8213/ab1086.
ADS  Cites
BibTeX DOI 
135)Pensionerov, I.A., et al. (2019), Model of Jupiter’s Current Sheet With a Piecewise Current Density, Journal of Geophysical Research (Space Physics), 124, 1843-1854, doi:10.1029/2018JA026321.
ADS  Cites
BibTeX DOI 
134)Hue, Vincent, et al. (2019), In-flight Characterization and Calibration of the Juno-ultraviolet Spectrograph (Juno-UVS), Astronomical Journal, 157, 90, doi:10.3847/1538-3881/aafb36.
ADS  Cites
BibTeX DOI 
133)Li, Cheng and Chen, Xi (2019), Simulating Nonhydrostatic Atmospheres on Planets (SNAP): Formulation, Validation, and Application to the Jovian Atmosphere, Astrophysical Journal, 240, 37, doi:10.3847/1538-4365/aafdaa.
ADS  Cites
BibTeX DOI 
132)Ebert, R.W., et al. (2019), Comparing Electron Energetics and UV Brightness in Jupiter’s Northern Polar Region During Juno Perijove 5, Geophysics Research Letters, 46, 19-27, doi:10.1029/2018GL081129.
ADS  Cites
BibTeX DOI 
131)Imai, Masafumi, et al. (2019), Probing Jovian Broadband Kilometric Radio Sources Tied to the Ultraviolet Main Auroral Oval With Juno, Geophysics Research Letters, 46, 571-579, doi:10.1029/2018GL081227.
ADS  Cites
BibTeX DOI 
130)Adriani, A., et al. (2018), Characterization of Mesoscale Waves in the Jupiter NEB by Jupiter InfraRed Auroral Mapper on board Juno, Astronomical Journal, 156, 246, doi:10.3847/1538-3881/aae525.
ADS  Cites
BibTeX DOI 
129)Bonfond, B., et al. (2018), Bar Code Events in the Juno-UVS Data: Signature ∼10 MeV Electron Microbursts at Jupiter, Geophysics Research Letters, 45, 12, doi:10.1029/2018GL080490.
ADS  Cites
BibTeX DOI 
128)Szalay, J.R., et al. (2018), In Situ Observations Connected to the Io Footprint Tail Aurora, Journal of Geophysical Research (Planets), 123, 3061-3077, doi:10.1029/2018JE005752.
ADS  Cites
BibTeX DOI 
127)Sánchez-Lavega, A., et al. (2018), The Rich Dynamics of Jupiter’s Great Red Spot from JunoCam: Juno Images, Astronomical Journal, 156, 162, doi:10.3847/1538-3881/aada81.
ADS  Cites
BibTeX DOI 
126)Clark, G., et al. (2018), Precipitating Electron Energy Flux and Characteristic Energies in Jupiter’s Main Auroral Region as Measured by Juno/JEDI, Journal of Geophysical Research (Space Physics), 123, 7554-7567, doi:10.1029/2018JA025639.
ADS  Cites
BibTeX DOI 
125)Elliott, S.S., et al. (2018), The Acceleration of Electrons to High Energies Over the Jovian Polar Cap via Whistler Mode Wave-Particle Interactions, Journal of Geophysical Research (Space Physics), 123, 7523-7533, doi:10.1029/2018JA025797.
ADS  Cites
BibTeX DOI 
124)Gershman, Daniel J., et al. (2018), Juno Constraints on the Formation of Jupiter’s Magnetospheric Cushion Region, Geophysics Research Letters, 45, 9427-9434, doi:10.1029/2018GL079118.
ADS  Cites
BibTeX DOI 
123)Gérard, J. -C., et al. (2018), Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno’s first perijove, Icarus, 312, 145-156, doi:10.1016/j.icarus.2018.04.020.
ADS  Cites
BibTeX DOI 
122)Kurth, W.S., et al. (2018), Whistler Mode Waves Associated With Broadband Auroral Electron Precipitation at Jupiter, Geophysics Research Letters, 45, 9372-9379, doi:10.1029/2018GL078566.
ADS  Cites
BibTeX DOI 
121)Louarn, P., et al. (2018), Observation of Electron Conics by Juno: Implications for Radio Generation and Acceleration Processes, Geophysics Research Letters, 45, 9408-9416, doi:10.1029/2018GL078973.
ADS  Cites
BibTeX DOI 
120)Moore, Kimberly M., et al. (2018), A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field, Nature, 561, 76-78, doi:10.1038/s41586-018-0468-5.
ADS  Cites
BibTeX DOI 
119)Fletcher, Leigh N., et al. (2018), Jupiter’s Mesoscale Waves Observed at 5 µm by Ground-based Observations and Juno JIRAM, Astronomical Journal, 156, 67, doi:10.3847/1538-3881/aace02.
ADS  Cites
BibTeX DOI 
118)Imai, Masafumi, et al. (2018), Jupiter Lightning-Induced Whistler and Sferic Events With Waves and MWR During Juno Perijoves, Geophysics Research Letters, 45, 7268-7276, doi:10.1029/2018GL078864.
ADS  Cites
BibTeX DOI 
117)Mura, A., et al. (2018), Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter, Science, 361, 774-777, doi:10.1126/science.aat1450.
ADS  Cites
BibTeX DOI 
116)Phipps, Phillip H., et al. (2018), Distribution of Plasma in the Io Plasma Torus as Seen by Radio Occultation During Juno Perijove 1, Journal of Geophysical Research (Space Physics), 123, 6207-6222, doi:10.1029/2017JA025113.
ADS  Cites
BibTeX DOI 
115)Stallard, Tom S., et al. (2018), Identification of Jupiter’s magnetic equator through H3+ ionospheric emission, Nature Astronomy, 2, 773-777, doi:10.1038/s41550-018-0523-z.
ADS  Cites
BibTeX DOI 
114)Brown, Shannon, et al. (2018), Prevalent lightning sferics at 600 megahertz near Jupiter’s poles, Nature, 558, 87-90, doi:10.1038/s41586-018-0156-5.
ADS  Cites
BibTeX DOI 
113)Grassi, D., et al. (2018), First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAM-Juno Images, Journal of Geophysical Research (Planets), 123, 1511-1524, doi:10.1029/2018JE005555.
ADS  Cites
BibTeX DOI 
112)Kolmašová, Ivana, et al. (2018), Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth, Nature Astronomy, 2, 544-548, doi:10.1038/s41550-018-0442-z.
ADS  Cites
BibTeX DOI 
111)Grodent, Denis, et al. (2018), Jupiter’s Aurora Observed With HST During Juno Orbits 3 to 7, Journal of Geophysical Research (Space Physics), 123, 3299-3319, doi:10.1002/2017JA025046.
ADS  Cites
BibTeX DOI 
110)Simon, Amy A., et al. (2018), Historical and Contemporary Trends in the Size, Drift, and Color of Jupiter’s Great Red Spot, Astronomical Journal, 155, 151, doi:10.3847/1538-3881/aaae01.
ADS  Cites
BibTeX DOI 
109)Wilson, R.J., et al. (2018), Solar Wind Properties During Juno’s Approach to Jupiter: Data Analysis and Resulting Plasma Properties Utilizing a 1-D Forward Model, Journal of Geophysical Research (Space Physics), 123, 2772-2786, doi:10.1002/2017JA024860.
ADS  Cites
BibTeX DOI 
108)Adriani, A., et al. (2018), Clusters of cyclones encircling Jupiter’s poles, Nature, 555, 216-219, doi:10.1038/nature25491.
ADS  Cites
BibTeX DOI 
107)Connerney, J.E.P., et al. (2018), A New Model of Jupiter’s Magnetic Field From Juno’s First Nine Orbits, Geophysics Research Letters, 45, 2590-2596, doi:10.1002/2018GL077312.
ADS  Cites
BibTeX DOI 
106)Guillot, T., et al. (2018), A suppression of differential rotation in Jupiter’s deep interior, Nature, 555, 227-230, doi:10.1038/nature25775.
ADS  Cites
BibTeX DOI 
105)Iess, L., et al. (2018), Measurement of Jupiter’s asymmetric gravity field, Nature, 555, 220-222, doi:10.1038/nature25776.
ADS  Cites
BibTeX DOI 
104)Kaspi, Y., et al. (2018), Jupiter’s atmospheric jet streams extend thousands of kilometres deep, Nature, 555, 223-226, doi:10.1038/nature25793.
ADS  Cites
BibTeX DOI 
103)Paranicas, C., et al. (2018), Intervals of Intense Energetic Electron Beams Over Jupiter’s Poles, Journal of Geophysical Research (Space Physics), 123, 1989-1999, doi:10.1002/2017JA025106.
ADS  Cites
BibTeX DOI 
102)Elliott, S.S., et al. (2018), Pitch Angle Scattering of Upgoing Electron Beams in Jupiter’s Polar Regions by Whistler Mode Waves, Geophysics Research Letters, 45, 1246-1252, doi:10.1002/2017GL076878.
ADS  Cites
BibTeX DOI 
101)Mauk, B.H., et al. (2018), Diverse Electron and Ion Acceleration Characteristics Observed Over Jupiter’s Main Aurora, Geophysics Research Letters, 45, 1277-1285, doi:10.1002/2017GL076901.
ADS  Cites
BibTeX DOI 
100)Adriani, Alberto, et al. (2017), JIRAM, the Jovian Infrared Auroral Mapper, Space Science Reviews, 213, 393-446, doi:10.1007/s11214-014-0094-y.
ADS  Cites
BibTeX DOI 
99)Asmar, Sami W., et al. (2017), The Juno Gravity Science Instrument, Space Science Reviews, 213, 205-218, doi:10.1007/s11214-017-0428-7.
ADS  Cites
BibTeX DOI 
98)Bagenal, F., et al. (2017), Magnetospheric Science Objectives of the Juno Mission, Space Science Reviews, 213, 219-287, doi:10.1007/s11214-014-0036-8.
ADS  Cites
BibTeX DOI 
97)Becker, H.N., et al. (2017), The Juno Radiation Monitoring (RM) Investigation, Space Science Reviews, 213, 507-545, doi:10.1007/s11214-017-0345-9.
ADS  Cites
BibTeX DOI 
96)Bolton, S.J. and Connerney, J.E.P. (2017), Editorial: Topical Collection of the Juno Mission Science Objectives, Instruments, and Implementation, Space Science Reviews, 213, 1-3, doi:10.1007/s11214-017-0430-0.
ADS  Cites
BibTeX DOI 
95)Bolton, S.J., et al. (2017), The Juno Mission, Space Science Reviews, 213, 5-37, doi:10.1007/s11214-017-0429-6.
ADS  Cites
BibTeX DOI 
94)Cao, Hao and Stevenson, David J. (2017), Zonal flow magnetic field interaction in the semi-conducting region of giant planets, Icarus, 296, 59-72, doi:10.1016/j.icarus.2017.05.015.
ADS  Cites
BibTeX DOI 
93)Connerney, J.E.P., et al. (2017), The Juno Magnetic Field Investigation, Space Science Reviews, 213, 39-138, doi:10.1007/s11214-017-0334-z.
ADS  Cites
BibTeX DOI 
92)Gladstone, G. Randall, et al. (2017), The Ultraviolet Spectrograph on NASA’s Juno Mission, Space Science Reviews, 213, 447-473, doi:10.1007/s11214-014-0040-z.
ADS  Cites
BibTeX DOI 
91)Grassi, D., et al. (2017), Analysis of IR-bright regions of Jupiter in JIRAM-Juno data: Methods and validation of algorithms, Journal of Quantitiative Spectroscopy and Radiative Transfer, 202, 200-209, doi:10.1016/j.jqsrt.2017.08.008.
ADS  Cites
BibTeX DOI 
90)Hansen, C.J., et al. (2017), Junocam: Juno’s Outreach Camera, Space Science Reviews, 213, 475-506, doi:10.1007/s11214-014-0079-x.
ADS  Cites
BibTeX DOI 
89)Janssen, M.A., et al. (2017), MWR: Microwave Radiometer for the Juno Mission to Jupiter, Space Science Reviews, 213, 139-185, doi:10.1007/s11214-017-0349-5.
ADS  Cites
BibTeX DOI 
88)Kurth, W.S., et al. (2017), The Juno Waves Investigation, Space Science Reviews, 213, 347-392, doi:10.1007/s11214-017-0396-y.
ADS  Cites
BibTeX DOI 
87)Mauk, B.H., et al. (2017), The Jupiter Energetic Particle Detector Instrument (JEDI) Investigation for the Juno Mission, Space Science Reviews, 213, 289-346, doi:10.1007/s11214-013-0025-3.
ADS  Cites
BibTeX DOI 
86)McComas, D.J., et al. (2017), The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter, Space Science Reviews, 213, 547-643, doi:10.1007/s11214-013-9990-9.
ADS  Cites
BibTeX DOI 
85)Steffes, Paul G., et al. (2017), High-Precision Laboratory Measurements Supporting Retrieval of Water Vapor, Gaseous Ammonia, and Aqueous Ammonia Clouds with the Juno Microwave Radiometer (MWR), Space Science Reviews, 213, 187-204, doi:10.1007/s11214-016-0265-0.
ADS  Cites
BibTeX DOI 
84)Tollefson, Joshua, et al. (2017), Changes in Jupiter’s Zonal Wind Profile preceding and during the Juno mission, Icarus, 296, 163-178, doi:10.1016/j.icarus.2017.06.007.
ADS  Cites
BibTeX DOI 
83)Li, W., et al. (2017), Understanding the Origin of Jupiter’s Diffuse Aurora Using Juno’s First Perijove Observations, Geophysics Research Letters, 44, 10, doi:10.1002/2017GL075545.
ADS  Cites
BibTeX DOI 
82)Clark, G., et al. (2017), Energetic particle signatures of magnetic field-aligned potentials over Jupiter’s polar regions, Geophysics Research Letters, 44, 8703-8711, doi:10.1002/2017GL074366.
ADS  Cites
BibTeX DOI 
81)Ebert, R.W., et al. (2017), Spatial Distribution and Properties of 0.1-100 keV Electrons in Jupiter’s Polar Auroral Region, Geophysics Research Letters, 44, 9199-9207, doi:10.1002/2017GL075106.
ADS  Cites
BibTeX DOI 
80)Louis, C.K., et al. (2017), Io-Jupiter decametric arcs observed by Juno/Waves compared to ExPRES simulations, Geophysics Research Letters, 44, 9225-9232, doi:10.1002/2017GL073036.
ADS  Cites
BibTeX DOI 
79)Mauk, B.H., et al. (2017), Discrete and broadband electron acceleration in Jupiter’s powerful aurora, Nature, 549, 66-69, doi:10.1038/nature23648.
ADS  Cites
BibTeX DOI 
78)Santos-Costa, D., et al. (2017), First look at Jupiter’s synchrotron emission from Juno’s perspective, Geophysics Research Letters, 44, 8676-8684, doi:10.1002/2017GL072836.
ADS  Cites
BibTeX DOI 
77)Bolton, Scott and Levin, Steven and Bagenal, Fran (2017), Juno’s first glimpse of Jupiter’s complexity, Geophysics Research Letters, 44, 7663-7667, doi:10.1002/2017GL074118.
ADS  Cites
BibTeX DOI 
76)Gershman, Daniel J., et al. (2017), Juno observations of large-scale compressions of Jupiter’s dawnside magnetopause, Geophysics Research Letters, 44, 7559-7568, doi:10.1002/2017GL073132.
ADS  Cites
BibTeX DOI 
75)Gladstone, G.R., et al. (2017), Juno-UVS approach observations of Jupiter’s auroras, Geophysics Research Letters, 44, 7668-7675, doi:10.1002/2017GL073377.
ADS  Cites
BibTeX DOI 
74)Ingersoll, Andrew P., et al. (2017), Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer, Geophysics Research Letters, 44, 7676-7685, doi:10.1002/2017GL074277.
ADS  Cites
BibTeX DOI 
73)Nichols, J.D., et al. (2017), Response of Jupiter’s auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno, Geophysics Research Letters, 44, 7643-7652, doi:10.1002/2017GL073029.
ADS  Cites
BibTeX DOI 
72)Valek, P.W., et al. (2017), Hot flow anomaly observed at Jupiter’s bow shock, Geophysics Research Letters, 44, 8107-8112, doi:10.1002/2017GL073175.
ADS  Cites
BibTeX DOI 
71)Allegrini, F., et al. (2017), Electron beams and loss cones in the auroral regions of Jupiter, Geophysics Research Letters, 44, 7131-7139, doi:10.1002/2017GL073180.
ADS  Cites
BibTeX DOI 
70)Bolton, Scott J. (2017), Juno celebrates a year at Jupiter, Nature Astronomy, 1, 0178, doi:10.1038/s41550-017-0178.
ADS  Cites
BibTeX DOI 
69)Fletcher, L.N., et al. (2017), Jupiter’s North Equatorial Belt expansion and thermal wave activity ahead of Juno’s arrival, Geophysics Research Letters, 44, 7140-7148, doi:10.1002/2017GL073383.
ADS  Cites
BibTeX DOI 
68)Galanti, Eli, et al. (2017), Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization, Astronomical Journal, 154, 2, doi:10.3847/1538-3881/aa72db.
ADS  Cites
BibTeX DOI 
67)Haggerty, D.K., et al. (2017), Juno/JEDI observations of 0.01 to >10 MeV energetic ions in the Jovian auroral regions: Anticipating a source for polar X-ray emission, Geophysics Research Letters, 44, 6476-6482, doi:10.1002/2017GL072866.
ADS  Cites
BibTeX DOI 
66)Imai, Masafumi, et al. (2017), Direction-finding measurements of Jovian low-frequency radio components by Juno near Perijove 1, Geophysics Research Letters, 44, 6508-6516, doi:10.1002/2017GL072850.
ADS  Cites
BibTeX DOI 
65)Kurth, W.S., et al. (2017), A new view of Jupiter’s auroral radio spectrum, Geophysics Research Letters, 44, 7114-7121, doi:10.1002/2017GL072889.
ADS  Cites
BibTeX DOI 
64)Szalay, J.R., et al. (2017), Plasma measurements in the Jovian polar region with Juno/JADE, Geophysics Research Letters, 44, 7122-7130, doi:10.1002/2017GL072837.
ADS  Cites
BibTeX DOI 
63)Gruesbeck, Jacob R., et al. (2017), The interplanetary magnetic field observed by Juno enroute to Jupiter, Geophysics Research Letters, 44, 5936-5942, doi:10.1002/2017GL073137.
ADS  Cites
BibTeX DOI 
62)Kaspi, Y., et al. (2017), The effect of differential rotation on Jupiter’s low-degree even gravity moments, Geophysics Research Letters, 44, 5960-5968, doi:10.1002/2017GL073629.
ADS  Cites
BibTeX DOI 
61)Kollmann, P., et al. (2017), A heavy ion and proton radiation belt inside of Jupiter’s rings, Geophysics Research Letters, 44, 5259-5268, doi:10.1002/2017GL073730.
ADS  Cites
BibTeX DOI 
60)Li, Cheng, et al. (2017), The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data, Geophysics Research Letters, 44, 5317-5325, doi:10.1002/2017GL073159.
ADS  Cites
BibTeX DOI 
59)Mura, A., et al. (2017), Infrared observations of Jovian aurora from Juno’s first orbits: Main oval and satellite footprints, Geophysics Research Letters, 44, 5308-5316, doi:10.1002/2017GL072954.
ADS  Cites
BibTeX DOI 
58)Sinclair, J.A., et al. (2017), Independent evolution of stratospheric temperatures in Jupiter’s northern and southern auroral regions from 2014 to 2016, Geophysics Research Letters, 44, 5345-5354, doi:10.1002/2017GL073529.
ADS  Cites
BibTeX DOI 
57)Adriani, A., et al. (2017), Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the north aurora, Geophysics Research Letters, 44, 4633-4640, doi:10.1002/2017GL072905.
ADS  Cites
BibTeX DOI 
56)Becker, Heidi N., et al. (2017), Observations of MeV electrons in Jupiter’s innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3, Geophysics Research Letters, 44, 4481-4488, doi:10.1002/2017GL073091.
ADS  Cites
BibTeX DOI 
55)Benn, M., et al. (2017), Observations of interplanetary dust by the Juno magnetometer investigation, Geophysics Research Letters, 44, 4701-4708, doi:10.1002/2017GL073186.
ADS  Cites
BibTeX DOI 
54)Bolton, S.J., et al. (2017), Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft, Science, 356, 821-825, doi:10.1126/science.aal2108.
ADS  Cites
BibTeX DOI 
53)Bonfond, B., et al. (2017), Morphology of the UV aurorae Jupiter during Juno’s first perijove observations, Geophysics Research Letters, 44, 4463-4471, doi:10.1002/2017GL073114.
ADS  Cites
BibTeX DOI 
52)Clark, G., et al. (2017), Observation and interpretation of energetic ion conics in Jupiter’s polar magnetosphere, Geophysics Research Letters, 44, 4419-4425, doi:10.1002/2016GL072325.
ADS  Cites
BibTeX DOI 
51)Connerney, J.E.P., et al. (2017), Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits, Science, 356, 826-832, doi:10.1126/science.aam5928.
ADS  Cites
BibTeX DOI 
50)Cowley, S.W.H., et al. (2017), Magnetosphere-ionosphere coupling at Jupiter: Expectations for Juno Perijove 1 from a steady state axisymmetric physical model, Geophysics Research Letters, 44, 4497-4505, doi:10.1002/2017GL073129.
ADS  Cites
BibTeX DOI 
49)Dinelli, B.M., et al. (2017), Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region, Geophysics Research Letters, 44, 4625-4632, doi:10.1002/2017GL072929.
ADS  Cites
BibTeX DOI 
48)Ebert, R.W., et al. (2017), Accelerated flows at Jupiter’s magnetopause: Evidence for magnetic reconnection along the dawn flank, Geophysics Research Letters, 44, 4401-4409, doi:10.1002/2016GL072187.
ADS  Cites
BibTeX DOI 
47)Folkner, W.M., et al. (2017), Jupiter gravity field estimated from the first two Juno orbits, Geophysics Research Letters, 44, 4694-4700, doi:10.1002/2017GL073140.
ADS  Cites
BibTeX DOI 
46)Grassi, D., et al. (2017), Preliminary results on the composition of Jupiter’s troposphere in hot spot regions from the JIRAM/Juno instrument, Geophysics Research Letters, 44, 4615-4624, doi:10.1002/2017GL072841.
ADS  Cites
BibTeX DOI 
45)Hospodarsky, G.B., et al. (2017), Jovian bow shock and magnetopause encounters by the Juno spacecraft, Geophysics Research Letters, 44, 4506-4512, doi:10.1002/2017GL073177.
ADS  Cites
BibTeX DOI 
44)Hueso, R., et al. (2017), Jupiter cloud morphology and zonal winds from ground-based observations before and during Juno’s first perijove, Geophysics Research Letters, 44, 4669-4678, doi:10.1002/2017GL073444.
ADS  Cites
BibTeX DOI 
43)Imai, Masafumi, et al. (2017), Statistical study of latitudinal beaming of Jupiter’s decametric radio emissions using Juno, Geophysics Research Letters, 44, 4584-4590, doi:10.1002/2017GL073148.
ADS  Cites
BibTeX DOI 
42)Imai, Masafumi, et al. (2017), Latitudinal beaming of Jovian decametric radio emissions as viewed from Juno and the Nançay Decameter Array, Geophysics Research Letters, 44, 4455-4462, doi:10.1002/2016GL072454.
ADS  Cites
BibTeX DOI 
41)Kimura, T., et al. (2017), Transient brightening of Jupiter’s aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft, Geophysics Research Letters, 44, 4523-4531, doi:10.1002/2017GL072912.
ADS  Cites
BibTeX DOI 
40)Louarn, P., et al. (2017), Generation of the Jovian hectometric radiation: First lessons from Juno, Geophysics Research Letters, 44, 4439-4446, doi:10.1002/2017GL072923.
ADS  Cites
BibTeX DOI 
39)Mauk, B.H., et al. (2017), Juno observations of energetic charged particles over Jupiter’s polar regions: Analysis of monodirectional and bidirectional electron beams, Geophysics Research Letters, 44, 4410-4418, doi:10.1002/2016GL072286.
ADS  Cites
BibTeX DOI 
38)Ma, Q., et al. (2017), Electron butterfly distributions at particular magnetic latitudes observed during Juno’s perijove pass, Geophysics Research Letters, 44, 4489-4496, doi:10.1002/2017GL072983.
ADS  Cites
BibTeX DOI 
37)McComas, D.J., et al. (2017), Plasma environment at the dawn flank of Jupiter’s magnetosphere: Juno arrives at Jupiter, Geophysics Research Letters, 44, 4432-4438, doi:10.1002/2017GL072831.
ADS  Cites
BibTeX DOI 
36)Moore, Kimberly M., et al. (2017), The analysis of initial Juno magnetometer data using a sparse magnetic field representation, Geophysics Research Letters, 44, 4687-4693, doi:10.1002/2017GL073133.
ADS  Cites
BibTeX DOI 
35)Moore, L., et al. (2017), Variability of Jupiter’s IR H3+ aurorae during Juno approach, Geophysics Research Letters, 44, 4513-4522, doi:10.1002/2017GL073156.
ADS  Cites
BibTeX DOI 
34)Moriconi, M.L., et al. (2017), Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions, Geophysics Research Letters, 44, 4641-4648, doi:10.1002/2017GL073592.
ADS  Cites
BibTeX DOI 
33)Moriconi, Maria L. and Noschese, R. and Adriani, A. (2017), Processing tools refinement for the JIRAM arrival to Jupiter, European Physical Journal Plus, 132, 227, doi:10.1140/epjp/i2017-11548-y.
ADS  Cites
BibTeX DOI 
32)Orton, G.S., et al. (2017), Multiple-wavelength sensing of Jupiter during the Juno mission’s first perijove passage, Geophysics Research Letters, 44, 4607-4614, doi:10.1002/2017GL073019.
ADS  Cites
BibTeX DOI 
31)Orton, Glenn S., et al. (2017), The first close-up images of Jupiter’s polar regions: Results from the Juno mission JunoCam instrument, Geophysics Research Letters, 44, 4599-4606, doi:10.1002/2016GL072443.
ADS  Cites
BibTeX DOI 
30)Paranicas, C., et al. (2017), Radiation near Jupiter detected by Juno/JEDI during PJ1 and PJ3, Geophysics Research Letters, 44, 4426-4431, doi:10.1002/2017GL072600.
ADS  Cites
BibTeX DOI 
29)Sindoni, G., et al. (2017), Characterization of the white ovals on Jupiter’s southern hemisphere using the first data by the Juno/JIRAM instrument, Geophysics Research Letters, 44, 4660-4668, doi:10.1002/2017GL072940.
ADS  Cites
BibTeX DOI 
28)Sánchez-Lavega, A., et al. (2017), A planetary-scale disturbance in the most intense Jovian atmospheric jet from JunoCam and ground-based observations, Geophysics Research Letters, 44, 4679-4686, doi:10.1002/2017GL073421.
ADS  Cites
BibTeX DOI 
27)Tetrick, S.S., et al. (2017), Plasma waves in Jupiter’s high-latitude regions: Observations from the Juno spacecraft, Geophysics Research Letters, 44, 4447-4454, doi:10.1002/2017GL073073.
ADS  Cites
BibTeX DOI 
26)Wahl, S.M., et al. (2017), Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core, Geophysics Research Letters, 44, 4649-4659, doi:10.1002/2017GL073160.
ADS  Cites
BibTeX DOI 
25)Zhang, X. -J., et al. (2017), Searching for low-altitude magnetic field anomalies by using observations of the energetic particle loss cone on JUNO, Geophysics Research Letters, 44, 4472-4480, doi:10.1002/2017GL072902.
ADS  Cites
BibTeX DOI 
24)Cao, Hao and Stevenson, David J. (2017), Gravity and zonal flows of giant planets: From the Euler equation to the thermal wind equation, Journal of Geophysical Research (Planets), 122, 686-700, doi:10.1002/2017JE005272.
ADS  Cites
BibTeX DOI 
23)Galanti, Eli and Kaspi, Yohai (2017), Decoupling Jupiter’s deep and atmospheric flows using the upcoming Juno gravity measurements and a dynamical inverse model, Icarus, 286, 46-55, doi:10.1016/j.icarus.2017.01.004.
ADS  Cites
BibTeX DOI 
22)Imai, M., et al. (2017), Analysis of Jovian low-frequency radio emissions based on stereoscopic observations with Juno and Earth-based radio telescopes, Planetary Radio Emissions VIII, 13-23, doi:10.1553/PRE8s13.
ADS  Cites
BibTeX DOI 
21)Kurth, W.S., et al. (2017), First observations near Jupiter by the Juno Waves investigation, Planetary Radio Emissions VIII, 1-12, doi:10.1553/PRE8s1.
ADS  Cites
BibTeX DOI 
20)Louis, C., et al. (2017), Simulating Jupiter-satellite decametric emissions with ExPRES: A parametric study, Planetary Radio Emissions VIII, 59-72, doi:10.1553/PRE8s59.
ADS  Cites
BibTeX DOI 
19)Bellotti, Amadeo and Steffes, Paul G. and Chinsomboom, Garrett (2016), Laboratory measurements of the 5-20 cm wavelength opacity of ammonia, water vapor, and methane under simulated conditions for the deep jovian atmosphere, Icarus, 280, 255-267, doi:10.1016/j.icarus.2016.07.013.
ADS  Cites
BibTeX DOI 
18)Hospodarsky, George B. (2016), Spaced-based search coil magnetometers, Journal of Geophysical Research (Space Physics), 121, 12, doi:10.1002/2016JA022565.
ADS  Cites
BibTeX DOI 
17)Sampl, Manfred, et al. (2016), Juno model rheometry and simulation, Radio Science, 51, 1627-1635, doi:10.1002/2016RS005954.
ADS  Cites
BibTeX DOI 
16)Kaspi, Y., et al. (2016), The gravitational signature of internal flows in giant planets: Comparing the thermal wind approach with barotropic potential-surface methods, Icarus, 276, 170-181, doi:10.1016/j.icarus.2016.04.001.
ADS  Cites
BibTeX DOI 
15)Adriani, A., et al. (2016), Juno’s Earth flyby: the Jovian infrared Auroral Mapper preliminary results, Astrophysics and Space Science, 361, 272, doi:10.1007/s10509-016-2842-9.
ADS  Cites
BibTeX DOI 
14)Clark, G., et al. (2016), Modeling the response of a top hat electrostatic analyzer in an external magnetic field: Experimental validation with the Juno JADE-E sensor, Journal of Geophysical Research (Space Physics), 121, 5121-5136, doi:10.1002/2016JA022583.
ADS  Cites
BibTeX DOI 
13)Galanti, Eli and Kaspi, Yohai (2016), An Adjoint-based Method for the Inversion of the Juno and Cassini Gravity Measurements into Wind Fields, Astrophysical Journal, 820, 91, doi:10.3847/0004-637X/820/2/91.
ADS  Cites
BibTeX DOI 
12)Parisi, M., et al. (2016), Probing the depth of Jupiter’s Great Red Spot with the Juno gravity experiment, Icarus, 267, 232-242, doi:10.1016/j.icarus.2015.12.011.
ADS  Cites
BibTeX DOI 
11)Pedersen, David Arge Klevang, et al. (2016), MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging, Acta Astronautica, 118, 308-315, doi:10.1016/j.actaastro.2015.11.001.
ADS  Cites
BibTeX DOI 
10)Devaraj, Kiruthika and Steffes, Paul G. and Duong, Danny (2014), The centimeter-wavelength opacity of ammonia under deep jovian conditions, Icarus, 241, 165-179, doi:10.1016/j.icarus.2014.06.017.
ADS  Cites
BibTeX DOI 
9)Duong, Danny and Steffes, Paul G. and Noorizadeh, Sahand (2014), The microwave properties of the jovian clouds: A new model for the complex dielectric constant of aqueous ammonia, Icarus, 229, 121-130, doi:10.1016/j.icarus.2013.11.004.
ADS  Cites
BibTeX DOI 
8)Bernard, Douglas E., et al. (2013), Europa planetary protection for Juno Jupiter Orbiter, Advances in Space Research, 52, 547-568, doi:10.1016/j.asr.2013.03.015.
ADS  Cites
BibTeX DOI 
7)Karpowicz, Bryan M. and Steffes, Paul G. (2013), Investigating the H2-He-H2O-CH4 equation of state in the deep troposphere of Jupiter, Icarus, 223, 277-297, doi:10.1016/j.icarus.2012.11.026.
ADS  Cites
BibTeX DOI 
6)Kaspi, Yohai (2013), Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics, Geophysics Research Letters, 40, 676-680, doi:10.1029/2012GL053873.
ADS  Cites
BibTeX DOI 
5)Karpowicz, Bryan M. and Steffes, Paul G. (2011), In search of water vapor on Jupiter: Laboratory measurements of the microwave properties of water vapor under simulated jovian conditions, Icarus, 212, 210-223, doi:10.1016/j.icarus.2010.11.035.
ADS  Cites
BibTeX DOI 
4)Grassi, D., et al. (2010), Jupiter’s hot spots: Quantitative assessment of the retrieval capabilities of future IR spectro-imagers, Planetary Space Science, 58, 1265-1278, doi:10.1016/j.pss.2010.05.003.
ADS  Cites
BibTeX DOI 
3)Hanley, Thomas R. and Steffes, Paul G. and Karpowicz, Bryan M. (2009), A new model of the hydrogen and helium-broadened microwave opacity of ammonia based on extensive laboratory measurements, Icarus, 202, 316-335, doi:10.1016/j.icarus.2009.02.002.
ADS  Cites
BibTeX DOI 
2)Adriani, Alberto, et al. (2008), JIRAM, the Image Spectrometer in the Near Infrared on Board the Juno Mission to Jupiter, Astrobiology, 8, 613-622, doi:10.1089/ast.2007.0167.
ADS  Cites
BibTeX DOI 
1)Matousek, Steve (2007), The Juno New Frontiers mission, Acta Astronautica, 61, 932-939, doi:10.1016/j.actaastro.2006.12.013.
ADS  Cites
BibTeX DOI 
Input file:            Juno_Known_20240304.doi    (2024-Mar-24 21:14:49)
Citations/BibTeX file: Juno_Known_20240304.bibtex (2024-Mar-25 09:13:51)
Below is a list of DOIs of the 392 papers with DOIs, in alphabetical order:
10.1002/2016GL072187
10.1002/2016GL072286
10.1002/2016GL072325
10.1002/2016GL072443
10.1002/2016GL072454
10.1002/2016JA022565
10.1002/2016JA022583
10.1002/2016RS005954
10.1002/2017GL072600
10.1002/2017GL072831
10.1002/2017GL072836
10.1002/2017GL072837
10.1002/2017GL072841
10.1002/2017GL072850
10.1002/2017GL072866
10.1002/2017GL072889
10.1002/2017GL072902
10.1002/2017GL072905
10.1002/2017GL072912
10.1002/2017GL072923
10.1002/2017GL072929
10.1002/2017GL072940
10.1002/2017GL072954
10.1002/2017GL072983
10.1002/2017GL073019
10.1002/2017GL073029
10.1002/2017GL073036
10.1002/2017GL073073
10.1002/2017GL073091
10.1002/2017GL073114
10.1002/2017GL073129
10.1002/2017GL073132
10.1002/2017GL073133
10.1002/2017GL073137
10.1002/2017GL073140
10.1002/2017GL073148
10.1002/2017GL073156
10.1002/2017GL073159
10.1002/2017GL073160
10.1002/2017GL073175
10.1002/2017GL073177
10.1002/2017GL073180
10.1002/2017GL073186
10.1002/2017GL073377
10.1002/2017GL073383
10.1002/2017GL073421
10.1002/2017GL073444
10.1002/2017GL073529
10.1002/2017GL073592
10.1002/2017GL073629
10.1002/2017GL073730
10.1002/2017GL074118
10.1002/2017GL074277
10.1002/2017GL074366
10.1002/2017GL075106
10.1002/2017GL075545
10.1002/2017GL076878
10.1002/2017GL076901
10.1002/2017JA024860
10.1002/2017JA025046
10.1002/2017JA025106
10.1002/2017JE005272
10.1002/2018GL077312
10.1007/s10509-016-2842-9
10.1007/s11214-013-0025-3
10.1007/s11214-013-9990-9
10.1007/s11214-014-0036-8
10.1007/s11214-014-0040-z
10.1007/s11214-014-0079-x
10.1007/s11214-014-0094-y
10.1007/s11214-016-0265-0
10.1007/s11214-017-0334-z
10.1007/s11214-017-0345-9
10.1007/s11214-017-0349-5
10.1007/s11214-017-0396-y
10.1007/s11214-017-0428-7
10.1007/s11214-017-0429-6
10.1007/s11214-017-0430-0
10.1007/s11214-020-00705-7
10.1007/s11214-023-00961-3
10.1016/j.actaastro.2006.12.013
10.1016/j.actaastro.2015.11.001
10.1016/j.asr.2013.03.015
10.1016/j.icarus.2009.02.002
10.1016/j.icarus.2010.11.035
10.1016/j.icarus.2012.11.026
10.1016/j.icarus.2013.11.004
10.1016/j.icarus.2014.06.017
10.1016/j.icarus.2015.12.011
10.1016/j.icarus.2016.04.001
10.1016/j.icarus.2016.07.013
10.1016/j.icarus.2017.01.004
10.1016/j.icarus.2017.05.015
10.1016/j.icarus.2017.06.007
10.1016/j.icarus.2018.04.020
10.1016/j.icarus.2019.03.022
10.1016/j.icarus.2019.04.003
10.1016/j.icarus.2019.113405
10.1016/j.icarus.2019.113475
10.1016/j.icarus.2019.113607
10.1016/j.icarus.2020.114215
10.1016/j.icarus.2021.114742
10.1016/j.icarus.2022.114937
10.1016/j.icarus.2022.114994
10.1016/j.icarus.2022.115169
10.1016/j.icarus.2022.115261
10.1016/j.icarus.2023.115815
10.1016/j.icarus.2024.115955
10.1016/j.icarus.2024.116005
10.1016/j.icarus.2024.116006
10.1016/j.icarus.2024.116028
10.1016/j.jqsrt.2017.08.008
10.1016/j.pss.2010.05.003
10.1016/j.pss.2019.06.001
10.1016/j.pss.2019.104781
10.1016/j.pss.2021.105395
10.1016/j.pss.2022.105597
10.1029/2012GL053873
10.1029/2017JA025113
10.1029/2018GL078566
10.1029/2018GL078864
10.1029/2018GL078973
10.1029/2018GL079118
10.1029/2018GL080490
10.1029/2018GL081129
10.1029/2018GL081227
10.1029/2018JA025639
10.1029/2018JA025797
10.1029/2018JA026169
10.1029/2018JA026297
10.1029/2018JA026321
10.1029/2018JA026431
10.1029/2018JE005555
10.1029/2018JE005752
10.1029/2019EA001061
10.1029/2019GL082951
10.1029/2019GL083442
10.1029/2019GL083842
10.1029/2019GL084146
10.1029/2019GL084201
10.1029/2019GL084799
10.1029/2019GL085393
10.1029/2019GL086527
10.1029/2019GL086572
10.1029/2019JA026626
10.1029/2019JA026862
10.1029/2019JA026997
10.1029/2019JA027007
10.1029/2019JA027306
10.1029/2019JA027314
10.1029/2019JA027382
10.1029/2019JA027458
10.1029/2019JA027485
10.1029/2019JA027486
10.1029/2019JA027633
10.1029/2019JA02766310.1002/essoar.10503657.1
10.1029/2019JA027676
10.1029/2019JA027693
10.1029/2019JA027696
10.1029/2019JA027699
10.1029/2019JE006096
10.1029/2019JE006098
10.1029/2019JE006165
10.1029/2019JE006206
10.1029/2019JE006262
10.1029/2019JE006292
10.1029/2019JE006293
10.1029/2019JE006354
10.1029/2019JE006366
10.1029/2019JE006367
10.1029/2019JE00636910.1002/essoar.10502999.1
10.1029/2020AV00027510.1002/essoar.10502511.2
10.1029/2020EA001229
10.1029/2020EA001254
10.1029/2020EA001338
10.1029/2020GL087623
10.1029/2020GL088198
10.1029/2020GL088397
10.1029/2020GL088432
10.1029/2020GL089267
10.1029/2020GL089721
10.1029/2020GL089732
10.1029/2020GL089818
10.1029/2020GL09002110.1002/essoar.10503834.1
10.1029/2020GL090764
10.1029/2020GL09083910.1002/essoar.10504411.1
10.1029/2020GL091579
10.1029/2020GL091627
10.1029/2020GL091797
10.1029/2020JA027868
10.1029/2020JA027904
10.1029/2020JA027933
10.1029/2020JA027957
10.1029/2020JA027964
10.1029/2020JA027968
10.1029/2020JA028052
10.1029/2020JA028138
10.1029/2020JA028142
10.1029/2020JA028152
10.1029/2020JA02858610.1002/essoar.10504085.1
10.1029/2020JA028697
10.1029/2020JA028713
10.1029/2020JA028717
10.1029/2020JA028742
10.1029/2020JA028949
10.1029/2020JA028971
10.1029/2020JA02908510.1002/essoar.10506065.1
10.1029/2020JE00639910.1002/essoar.10502118.1
10.1029/2020JE00640310.1002/essoar.10502154.1
10.1029/2020JE00640410.1002/essoar.10502179.1
10.1029/2020JE006415
10.1029/2020JE006416
10.1029/2020JE006504
10.1029/2020JE006508
10.1029/2020JE006509
10.1029/2020JE006522
10.1029/2020JE006526
10.1029/2020JE006659
10.1029/2020JE006686
10.1029/2020JE006772
10.1029/2020JE006795
10.1029/2020RS00718410.1002/essoar.10506936.1
10.1029/2021GL09291210.1002/essoar.10506285.1
10.1029/2021GL093021
10.1029/2021GL093964
10.1029/2021GL094235
10.1029/2021GL095006
10.1029/2021GL095457
10.1029/2021GL095651
10.1029/2021GL095756
10.1029/2021GL095833
10.1029/2021GL096994
10.1029/2021JA029190
10.1029/2021JA029195
10.1029/2021JA029263
10.1029/2021JA029426
10.1029/2021JA02943510.1002/essoar.10506795.1
10.1029/2021JA029446
10.1029/2021JA029450
10.1029/2021JA029469
10.1029/2021JA02960810.1002/essoar.10507161.2
10.1029/2021JA02967910.1002/essoar.10503105.2
10.1029/2021JA029710
10.1029/2021JA029853
10.1029/2021JA029885
10.1029/2021JA02988610.1002/essoar.10507765.1
10.1029/2021JA029894
10.1029/2021JA029930
10.1029/2021JA030040
10.1029/2021JA030160
10.1029/2021JA03018110.1002/essoar.10509272.1
10.1029/2021JA030224
10.1029/2021JE00685810.1002/essoar.10506297.2
10.1029/2021JE006928
10.1029/2021JE00695410.1002/essoar.10507057.1
10.1029/2021JE007055
10.1029/2021JE007138
10.1029/2021JE007159
10.1029/2021RS007387
10.1029/2022GL098053
10.1029/2022GL098077
10.1029/2022GL098111
10.1029/2022GL098420
10.1029/2022GL098474
10.1029/2022GL098572
10.1029/2022GL098591
10.1029/2022GL098600
10.1029/2022GL098633
10.1029/2022GL098682
10.1029/2022GL098708
10.1029/2022GL098741
10.1029/2022GL098839
10.1029/2022GL099139
10.1029/2022GL099141
10.1029/2022GL099211
10.1029/2022GL099285
10.1029/2022GL099475
10.1029/2022GL099532
10.1029/2022GL099545
10.1029/2022GL099775
10.1029/2022GL099794
10.1029/2022GL099832
10.1029/2022GL100281
10.1029/2022GL100597
10.1029/2022GL101555
10.1029/2022GL101565
10.1029/2022GL101688
10.1029/2022GL102321
10.1029/2022JA030293
10.1029/2022JA030334
10.1029/2022JA030418
10.1029/2022JA030431
10.1029/2022JA030460
10.1029/2022JA030497
10.1029/2022JA030586
10.1029/2022JA030675
10.1029/2022JA030719
10.1029/2022JA031009
10.1029/2022JA031155
10.1029/2022JA031180
10.1029/2022JA031199
10.1029/2022JA031237
10.1029/2022JA031280
10.1029/2022JE007241
10.1029/2022JE007323
10.1029/2022JE007479
10.1029/2022JE007493
10.1029/2022JE007509
10.1029/2022JE007609
10.1029/2022JE007610
10.1029/2022JE007625
10.1029/2022JE007637
10.1029/2023EA003147
10.1029/2023GL102921
10.1029/2023GL103131
10.1029/2023GL103456
10.1029/2023GL103635
10.1029/2023GL103894
10.1029/2023GL104123
10.1029/2023GL104374
10.1029/2023GL105549
10.1029/2023GL105598
10.1029/2023GL105775
10.1029/2023GL106637
10.1029/2023GL106810
10.1029/2023GL106971
10.1029/2023JA031288
10.1029/2023JA031312
10.1029/2023JA031363
10.1029/2023JA031396
10.1029/2023JA03143610.22541/essoar.167751577.72637945/v1
10.1029/2023JA03165610.22541/essoar.168298676.61403547/v1
10.1029/2023JA031901
10.1029/2023JA031985
10.1029/2023JA032113
10.1029/2023JE008085
10.1029/2023JE008105
10.1038/nature23648
10.1038/nature25491
10.1038/nature25775
10.1038/nature25776
10.1038/nature25793
10.1038/s41467-019-10708-w
10.1038/s41467-022-32299-9
10.1038/s41550-017-0178
10.1038/s41550-018-0442-z
10.1038/s41550-018-0523-z
10.1038/s41550-019-0772-5
10.1038/s41550-019-0819-7
10.1038/s41550-020-1009-3
10.1038/s41550-021-01554-2
10.1038/s41550-022-01774-0
10.1038/s41550-024-02206-x
10.1038/s41561-021-00781-6
10.1038/s41567-021-01458-y
10.1038/s41586-018-0156-5
10.1038/s41586-018-0468-5
10.1038/s41586-020-2532-1
10.1051/0004-6361/202243207
10.1073/pnas.2120486119
10.1089/ast.2007.0167
10.1093/mnras/stab740
10.1093/mnras/stz2657
10.1126/sciadv.abf0851
10.1126/science.aal2108
10.1126/science.aam5928
10.1126/science.aat1450
10.1126/science.abf1015
10.1126/science.abf1396
10.1140/epjp/i2017-11548-y
10.1553/PRE8s1
10.1553/PRE8s13
10.1553/PRE8s59
10.2514/1.G004503
10.2514/1.G005311
10.3389/fspas.2023.1016345
10.3390/rs15030841
10.3847/0004-637X/820/2/91
10.3847/1538-3881/aa72db
10.3847/1538-3881/aaae01
10.3847/1538-3881/aace02
10.3847/1538-3881/aada81
10.3847/1538-3881/aae525
10.3847/1538-3881/aafb36
10.3847/1538-3881/abd414
10.3847/1538-4357/acb7e0
10.3847/1538-4365/aafdaa
10.3847/2041-8213/ab1086
10.3847/2041-8213/ab288e
10.3847/2041-8213/ac1d50
10.3847/PSJ/ac7ec8
10.3847/PSJ/acaf6b