Appendix 1
Maps and Spectra of Jupiter and the Galilean Satellites

J. R. Spencer
Lowell Observatory, Flagstaff AZ

R. W. Carlson
Jet Propulsion Laboratory, California Institute of Technology

T. L. Becker, J. S. Blue
U. S. Geological Survey, Flagstaff AZ

A1.1 SPECTRA
The spectra (Figs. A1.1–A1.3) cover separately the reflected sunlight (0.2–5 μm) and thermal emission (>5 μm) wavelength regions for Jupiter and the Galilean satellites, using a logarithmic wavelength scale to give all spectral regions comparable coverage. All spectra have been binned to a maximum resolution (λ/Δλ) of ∼1000. We have used the best available spectra in each wavelength regime, so different spectra may cover different parts of each body, and there is a mixture of disk-resolved and disk-integrated data.

An attempt has been made at rough absolute calibration, in units of geometric albedo (including the opposition effect for the satellites, consistent with the IAU convention (Bowell et al. 1989)) for the reflected regime and brightness temperature for the thermal emission regime. All satellite reflectance spectra are scaled to match ground-based multiwavelength geometric albedo measurements (Morrison and Morrison 1977) for u, v, b, and V, and Tittemore and Sinton (1989) for K, L’, and M), shown by horizontal gray bars.

Letters label specific spectral features, though the weaker features are not always obvious in the spectra as reproduced here. In the interest of simplicity we do not give citations for the discovery or identification of these features: see the rest of the book for details. For the icy satellite spectra, unlabelled features are due to H2O ice, and the other spectral features have consistent labels as follows: A = SO2; B = O2; C = bound H2O; D = H2O2; E = CO2; F = O3; G = C-H (?); H = S-H (?); I = C-N (?); J = O-H or bound H2O (where the question marks indicate some uncertainty in the identification of spectral features). For the other bodies, spectral identifications are given in the captions. For the satellites, the letter in square brackets next to the spectrum label refers to the satellite hemisphere observed: L = leading; T = trailing; A = anti-Jupiter; J = Jupiter-facing.

A1.2 MAPS
The Jupiter “map” (Fig. A1.8 and Plate 16) shows cloud features as imaged by the Cassini ISS camera on October 31, 2002, using a simple rectangular projection of planetocentric coordinates. The longitude scale is System II, in which mid-latitude cloud features are relatively static. System III longitude values were 35° smaller on this date. Two latitude systems are shown: planetocentric latitude θC and planetographic latitude θG; these are related by the formula tan(θC) = O2 tan(θG), where O is the ratio of Jupiter’s polar diameter to its equatorial diameter, 0.9352. A Voyager-based zonal (east/west) wind profile, from Limaye (1986) is shown: the Cassini wind profile (Porco et al. 2003) is very similar. The wind profile defines the classical “belts” and “zones”, as shown: belts have cyclonic latitudinal wind shear and zones have anticyclonic shear. Zones tend to be covered in high-altitude, high-albedo cloud and are thus generally lighter in color than belts. Belt/zone boundaries and classical nomenclature are from Rogers (1995): NNTB = North north temperate belt; NTZ = North temperate zone; NTB = North temperate belt; NTZY = North tropical zone; NEB = North equatorial belt; EZ = Equatorial zone; and similarly for the southern hemisphere. The two largest long-lived cloud features are the Great Red Spot, at longitude 75° latitude −20° (planetocentric) at this epoch, and White Oval AE at longitude 285°, latitude −30° (planetocentric).

We provide two Io maps, one in color (Fig. A1.8 and Plate 16) to show color and albedo patterns, and one in grayscale (Fig.) to show topography. The enhanced-color map was made using a simple rectangular projection, showing major albedo features and selected volcanoes. The base map is from Geissler et al. (1999), and uses Galileo images taken in 1996 and 1997 at 0.41, 0.56, and 0.76 μm, at low phase angles (0.5–13.9°). The grayscale Io map is a custom map (estimated accuracy of location of features ∼10–20 km). The icy Galilean satellite maps (Figs. –) are compact versions of new U. S. Geological Survey (USGS) photomosaic maps incorporating the best regional Voyager and Galileo imagery, and new control networks developed by the USGS. Modifications for this appendix include enlargement of labels for readability, and removal of some feature names to avoid crowding. Full-sized paper versions of the icy satellite maps are available from the USGS (map numbers...
I-2757, I-2770, and I-2762 for Europa, Ganymede, and Callisto respectively), with Io to follow soon, and are available electronically (see accompanying CD or www.astrogeology.usgs.gov). For all the grayscale maps, Mercator projection is used for low latitudes and polar stereographic projection for high latitudes. Maps are for positional reference only and are not intended to be photometrically accurate.

Figure A1.1. Jupiter reflectance spectrum. A = NH₃; B = H₂; C = PH₃. Other features are due to CH₄, though most fine structure in the UV spectrum is noise. References: Edgington et al. (1998), Edgington et al. (1999), Karkoschka (1998); NIMS: Carlson et al. (1996); ISO: Encrenaz et al. (1996), Encrenaz et al. (1999). The ISO flux spectrum is divided by a 6000 K blackbody to convert to albedo.

Figure A1.2. Jupiter emission spectrum. A = numerous species including H₂O, PH₃, GeH₄, NH₃, CO; D = NH₃; E = C₂H₆; F = C₃H₂; G = H₂; H = PH₃. References: ISO: Encrenaz et al. (1996), Encrenaz et al. (1999); CIRS: Hanel et al. (2003).
Figure A1.3. Galilean satellite emission spectra, binned to a spectral resolution of 94 to reduce noise, mostly obtained by the Voyager Infrared Interferometer Spectrometer (IRIS) (Spencer 1987). The fine structure at short wavelengths is probably noise. Note: the IRIS spectra of the icy satellites are disk-resolved, the Io spectrum is disk-integrated. Io's spectrum has steeper slope and broad features, in contrast to the featureless and more nearly blackbody emission from the icy satellites. Io: mean of 13 Voyager 1 IRIS full-disk spectra. Io fills roughly 90% of the field of view, brightness temperatures being corrected for this filling factor. The volcanic component accounts for the steep rise in brightness temperature at shorter wavelengths. Broad, shallow, spectral features in the 10–30 µm region may come from surface SO₃ (Khanna et al. 1995). FDS count range 16.368.25–16.368.49; sub-spacecraft point at 156° W, 0° N. Europa 14–30 µm: Mean of 6 warmest on-disk Voyager 2 IRIS resolved spectra (substantially colder than the unobserved subsolar region). FDS count range 20.649.44–20.650.47; mean location 163° W, 10° S; phase angle = 92°; emission angle = 34°; local time = 4 pm. Europa 8.5–15.3 µm: Ground-based Europa spectrum, scaled to Callisto, from Mills and Brown (2000). Ganymede: Mean of 7 warmest Voyager 1 IRIS disk-resolved spectra, covering Nicholson Regio. FDS count range 16.402.21–16.402.29, mean location = 0° W, 15° S, phase angle = 50°, emission angle = 30°, local time = 2 pm. Callisto: Mean of 6 warmest Voyager 1 IRIS resolved spectra, covering a region SE of Valhalla. FDS count range 16.418.29–16.418.34, mean location = 13° W, 0° N, phase angle = 41°, emission angle = 20°, local time = 2 pm.

Figure A1.4. Io reflectance spectrum. Spectral identifications: A = SO₂ gas (fine structure below 0.23 µm); B = S₈ or S₈O; C = S₄; D = unknown; E = Cl₂SO₂ (?). Other features are due to SO₃ frost. References: Jessup et al. (2002), Nelson and Hapke (1978), Spencer et al. (1995), Clark and Mc Cord (1980); NIMS: Carlson et al. (1997); ISO: Schmitt et al. (2003).

Figure A1.8. TOP: Natural-color cylindrical mosaic of Jupiter based on Cassini images taken on October 31, 2000. Scale: 10° of latitude corresponds to 12 500 km at the equator. BOTTOM: Io map. Scale: 10° of latitude corresponds to 318 km. At the time of going to press a colour version of this figure was available for download from http://www.cambridge.org/9780521035453.
Figure A1.9. Io map. High resolution coverage is emphasized: for lower-resolution color coverage see Fig. A1.8. Based on Fig. 1 of McEwen et al. (1998), which shows Io’s appearance in 1996 and 1997, with the substitution of a mosaic of 1979 Voyager 1 images in those regions, centered near longitude 320°, where Voyager 1 resolution exceeds that of Galileo. A black line separates Voyager and Galileo coverage. In the feature names, “P” stands for “Patera”. 10° of latitude on Io corresponds to 318 km.
Figure A1.10. Europa map. In the feature names, "L." stand for "Linea". Scale: 10° of latitude corresponds to 273 km.
Figure A1.11. Ganymede map. In the feature names, "S." stands for "Sulcus". Scale: 10° of latitude corresponds to 460 km.
Figure A1.12. Callisto map. Scale: 10° of latitude corresponds to 419 km.
REFERENCES

Clark, R. N. and T. B. McCord, The Galilean satellites: New near-infrared spectral reflectance measurements (0.65–2.5 microns) and a 0.325–5 microm spectum on Jupiter from HST Faint Object Spectrograph observations, Icarus 133, 192–209, 1998.

