Appendix 1: Io's hot spots

Rosaly M. C. Lopes, Jani Radebaugh, Melissa Meiner, Jason Perry, and Franck Marchis

Detectsions of plumes and hot spots by Galileo, Voyager, HST, and ground-based observations.

Notes and sources
- (N) NICMOS hot spots detected by Goguen et al. (1998).
- (D) Hot spots detected by C. Dumas et al. in 1997 and/or 1998 (pers. commun.).
- Keck are hot spots detected by de Pater et al. (2004) and Marchis et al. (2001) from the Keck telescope using Adaptive Optics.
- (V, G, C) indicate Voyager, Galileo, or Cassini detection. Other ground-based hot spots detected by Spencer et al. (1997a).
- Galileo PPR detections from Spencer et al. (2000) and Rathbun et al. (2004).
- Locations of surface features are approximate center of caldera or feature.

References

Appendix I: Io's hot spots

Table A.1. Active volcanic centers on Io.

<table>
<thead>
<tr>
<th>Volcanic center</th>
<th>Location of candidate surface feature, if known</th>
<th>Detected by Galileo SSI?</th>
<th>Detected by Galileo PPR?</th>
<th>Detected by Voyager IRIS?</th>
<th>Detected from ground or HST NICMOS?</th>
<th>Plume detected?</th>
<th>Surface change detected?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruwa Patera</td>
<td>0.5N, 2.7W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>9812A?</td>
<td>No</td>
<td>Faint hot spot detected by SSI in several orbits. Detected from Keck (de Pater et al., 2004).</td>
</tr>
<tr>
<td>Nusku Patera</td>
<td>64.4S, 4.9W</td>
<td>No</td>
<td>No</td>
<td>Yes?</td>
<td>Keck (12/2001)</td>
<td>No</td>
<td>No</td>
<td>Red deposits.</td>
</tr>
<tr>
<td>Mbauli Patera</td>
<td>31.4S, 6.8W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>1±1S, 9±1W</td>
<td>No</td>
<td>No</td>
<td>Possibly part of Kapei Complex. Detected by SSI in C21 and from Keck (12/2001, de Pater et al., 2004).</td>
</tr>
<tr>
<td>Unnamed</td>
<td>2.8S, 13.3W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>31±1N, 14±1W</td>
<td>No</td>
<td>Detected from Keck (12/2001; de Pater et al., 2004).</td>
</tr>
<tr>
<td>Unnamed</td>
<td>11.5S, 14W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>9606C?</td>
<td>No</td>
<td>Detected by SSI in several orbits.</td>
</tr>
<tr>
<td>Karei Patera</td>
<td>2N, 16W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>9608A? 9812A?</td>
<td>No</td>
<td>Detected by SSI in G8.</td>
</tr>
<tr>
<td>Unnamed</td>
<td>6S, 19W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by SSI in several orbits.</td>
</tr>
<tr>
<td>Unnamed</td>
<td>1N, 21W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by SSI in several orbits.</td>
</tr>
<tr>
<td>Unnamed</td>
<td>1S, 23W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by SSI in G8. Very low albedo.</td>
</tr>
<tr>
<td>Unnamed</td>
<td>5N, 23W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>9606C?</td>
<td>No</td>
<td>Repeated ground-based detections (07/1998 and 12/2001 from Keck, also detected by C. Dumas).</td>
</tr>
<tr>
<td>Unnamed</td>
<td>9S, 27W</td>
<td>Maybe</td>
<td>7±5S, 34±3W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by SSI in several orbits. N. Polar changes seen by SSI, unclear if location consistent with ground-detected hot spot. Error on ground-observed hot spot ~15 degrees.</td>
</tr>
<tr>
<td>Unnamed</td>
<td>16.5S, 27.9W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>9606C?</td>
<td>No</td>
<td>Detected numerous times from the ground and by NIMS. Two active areas (N and S) detected by SSI.</td>
</tr>
<tr>
<td>Unnamed</td>
<td>69N, 30W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Kannekeili N and S</td>
<td>16S, 38W</td>
<td>14.5S, 33.4W</td>
<td>12±10S, 34±4W</td>
<td>No</td>
<td>No</td>
<td>Numerous</td>
<td>G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.2S, 33.5W</td>
<td></td>
<td></td>
<td></td>
<td>ground-based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>detections N5,</td>
<td>Keck (12/2001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Status</td>
<td>Coordinates</td>
<td>Detected by</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janus Patera</td>
<td>3S, 42.5W</td>
<td>No</td>
<td>Yes</td>
<td>2±3S, 39±3W</td>
<td>No</td>
<td>Detected from Keck (12/2001, de Pater et al., 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected several times from the ground (including by Keck on 12/2001).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected by NIMS and SSI in several orbits. NIMS C30 data suggests two hot spots. Second at 7±3S, 34±3W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed (Keck "V")</td>
<td>11N, 59W</td>
<td>No</td>
<td>Yes</td>
<td>45±2S, 56±2W</td>
<td>No</td>
<td>Detected by NIMS and SSI in several orbits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masedibi</td>
<td>48S, 60W</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td>New plume deposits. Hot spot detected by SSI and NIMS in E11, 131.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hot spot detected by J. Spencer on 98/08/29 (faded by 98/08/31).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>60±15N, 60±15W</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td>Detected by J. Spencer and R. Howell at 60±15N, 60±15W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Possible site of outburst detected on 99/08/02 by R. Howell.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected by NIMS in orbit C30, 131, 132.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bright red deposits. Detected by SSI and NIMS in several orbits, including NIMS in 121 and 132.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected during several orbits by SSI and NIMS, including by NIMS in 131. Possible site of outburst detected on 99/08/02 by R. Howell. Hot spot detected by NIMS before outburst (C21).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected by NIMS in E11 and 131.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected multiple times from the ground and by NIMS. Plume deposits detected by SSI in 1996/1997.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>31S, 79.8W</td>
<td>No</td>
<td>Yes</td>
<td>1±4S, 76±4W</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hi'iaka Patera</td>
<td>31S, 79.8W</td>
<td>No</td>
<td>Yes</td>
<td>3±3S, 79±3W</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table A.1. Active volcanic centers on Io (cont.).

<table>
<thead>
<tr>
<th>Volcanic center</th>
<th>Location of candidate surface feature, if known</th>
<th>Detected by Galileo SSI?</th>
<th>Detected by Galileo NIMS?</th>
<th>Detected by Voyager PPR?</th>
<th>Detected by Voyager IRIS?</th>
<th>Detected from ground or HST NICMOS?</th>
<th>Plume detected?</th>
<th>Surface change detected?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estan Patera</td>
<td>24.6N, 86.2W No</td>
<td>21±2N, 87±2W and 20±1N, 81±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by NIMS in 131, 132</td>
</tr>
<tr>
<td>(NIMS 131F and 131M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected by NIMS in 132. Possibly same as Pollaahu hot spot</td>
</tr>
<tr>
<td>Unnamed</td>
<td>18.6S, 87.5W No</td>
<td>19±1S, 87±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by SSJ in one orbit (GS)</td>
</tr>
<tr>
<td>(NIMS 132J)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected by NIMS during several orbits, including 131, 132. Possible site of outburst detected on 99/08/02 by R. Howell. Detected by Keck on 12/2001</td>
</tr>
<tr>
<td>Gish Bar Patera</td>
<td>28.3S, 87.6W Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by SSJ in E15 and by NIMS in 131, 132</td>
</tr>
<tr>
<td>Unnamed</td>
<td>15.6N, 89.1W Yes</td>
<td>16±4N, 89±5W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by Keck (Marchis et al., 2003)</td>
</tr>
<tr>
<td>Unnamed</td>
<td>43.9N, 90.7W Yes</td>
<td>44±2N, 91±2W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by NIMS in 132</td>
</tr>
<tr>
<td>(NIMS 131E, Aluna Patera)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected by NIMS in several orbits, including 131</td>
</tr>
<tr>
<td>Unnamed</td>
<td>37.3S, 91.9W No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by SSJ in E15 and by NIMS in 131, 132</td>
</tr>
<tr>
<td>Unnamed</td>
<td>5.8N, 96.7W No</td>
<td>7±1N, 95±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by NIMS in several orbits, including 131</td>
</tr>
<tr>
<td>(NIMS 132K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected by NIMS in C10, 131, 132</td>
</tr>
<tr>
<td>Sigurd Patera</td>
<td>5.9S, 97.4W No</td>
<td>5±4S, 100±4W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Possible site of outburst detected by J. Spencer in March 1995. Hot spot detected by NIMS in 131, 132</td>
</tr>
<tr>
<td>Itzamna</td>
<td>5.9S, 97.7W No</td>
<td>15±3S, 97±3W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by NIMS in C30, 131, 132</td>
</tr>
<tr>
<td>Arusha Patera</td>
<td>39S, 100.7W No</td>
<td>39±2S, 100±2W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by NIMS in several orbits, including 131, 132. Detected by SSJ in E15. Plume possibly detected by SSJ in E4. SSI images suggest 3 main active areas</td>
</tr>
<tr>
<td>Catha Patera</td>
<td>53.6S, 100.9W No</td>
<td>53±1S, 105±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Monan Patera</td>
<td>20.3N, 103.8W Yes</td>
<td>20±1N, 103±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes?</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Latitude, Longitude</td>
<td>Detected by</td>
<td>Activity</td>
<td>Bright Red Deposits</td>
<td>NIMS in Orbits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed ("Al Peka Patra")</td>
<td>10.3N, 106.3W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed (NIMS 131D)</td>
<td>Possibly part of Monan Patra complex</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altijra Patra</td>
<td>34.3S, 108.4W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed (NIMS 132G)</td>
<td>47.1S, 108.1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed (NIMS 132F)</td>
<td>69.1S, 108.3W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed (NIMS C30B)</td>
<td>24N, 109W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed (NIMS 127E, NW of Monan)</td>
<td>31.1N, 115.9W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amirani</td>
<td>23.2N, 116.3W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed (NIMS 131J, in Tyvashar Catena)</td>
<td>59.5N, 117.9W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dusurra</td>
<td>37.1N, 118.5W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed (NIMS 132M)</td>
<td>40N, 118.6W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ernakong</td>
<td>3S, 120W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Volcanic center</th>
<th>Location of candidate surface feature, if known</th>
<th>Detected by Galileo SSP?</th>
<th>Detected by Galileo NIMS?</th>
<th>Detected by Voyager PPR?</th>
<th>Detected by Voyager IRIS?</th>
<th>Detected from ground or HST NICMOS?</th>
<th>Plume detected?</th>
<th>Surface change detected?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tvashtar Catena (Lava fountain site)</td>
<td>61.5N, 120.2W, 62N, 123W</td>
<td>Yes</td>
<td>62±1N, 123±1W</td>
<td>No</td>
<td>No</td>
<td>9911A</td>
<td>No</td>
<td>Yes</td>
<td>Detected by NIMS in 125, 127, G29, 131, 132. Detected by SSI in 125 and G7. Lava fountain seen in 125. Possible site of 990930A and of outbursts in 11/13/00 and 12/16/00.</td>
</tr>
<tr>
<td>Unnamed (NIMS 131K, in Tvashtar Catena)</td>
<td>60.5N, 120.4W</td>
<td>No</td>
<td>61±1N, 120±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by NIMS in orbit 131 (131K). Small caldera SE of Tvashtar lava fountain site.</td>
</tr>
<tr>
<td>Maui Patera</td>
<td>16.2N, 123.8W</td>
<td>No</td>
<td>16.5±1N, 124±1W</td>
<td>No</td>
<td>Yes-same as Amirani?</td>
<td>No</td>
<td>V</td>
<td>Yes?</td>
<td>Voyager plume site was at the end of Amirani flow. Hot spot detected by NIMS in several orbits prior to 127, 131, and 132, but position uncertain. Small caldera to the north-east of Tvashtar, detected by NIMS in 131.</td>
</tr>
<tr>
<td>Unnamed (NIMS 131L, NE Tvashtar Catena)</td>
<td>67N, 125W</td>
<td>No</td>
<td>67±1N, 125±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Small outburst in NE Tvashtar Catena; detected by NIMS in 131.</td>
</tr>
<tr>
<td>Unnamed (NIMS 131H)</td>
<td>11S, 128W</td>
<td>No</td>
<td>11±1S, 127±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Bright red deposits. Hot spot detected by NIMS in several orbits, including 131, 132. Detected by NIMS in 127, 131, 132.</td>
</tr>
<tr>
<td>Malik Patera</td>
<td>34S, 129W</td>
<td>No</td>
<td>34±2S, 128±2W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Large outburst. Hot spot detected by NIMS in 131, 132. Active flow detected by NIMS in 131, 132. Large plume detected by SSI in 131 and 132.</td>
</tr>
<tr>
<td>Location</td>
<td>Coordinates</td>
<td>Detected by NMS</td>
<td>Detected by NIMS</td>
<td>Detected by SSI</td>
<td>Detected by SSI in orbit G7</td>
<td>Detected by NIMS in</td>
<td>Detected by NIMS in</td>
<td>Detected by NIMS in</td>
<td>Detected by NIMS in</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Yaw Patera</td>
<td>9.3N, 132W</td>
<td>No</td>
<td>9.5±1N, 132±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unnamed</td>
<td>25, 133W</td>
<td>No</td>
<td>5±1S, 132±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Tien Mu Patera</td>
<td>12N, 133.9W</td>
<td>No</td>
<td>12±1N, 134±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Camaxtli Patera</td>
<td>15N, 136.4W</td>
<td>Yes</td>
<td>14.5±1N, 136±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unnamed</td>
<td>35.2N, 137.2W</td>
<td>No</td>
<td>35±1N, 137±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rumensko Patera</td>
<td>14.5N, 139.3W</td>
<td>No</td>
<td>15±1N, 139±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unnamed</td>
<td>45S, 140W</td>
<td>No</td>
<td>45±1S, 139±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Tupan Patera</td>
<td>19S, 141W</td>
<td>No</td>
<td>17±1S, 141±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unnamed</td>
<td>66N, 144W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unnamed</td>
<td>22N, 145.6W</td>
<td>No</td>
<td>22±1N, 145±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Cuchhi Patera</td>
<td>0.6N, 145.8W</td>
<td>No</td>
<td>2±1S, 144±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unnamed</td>
<td>26S, 147W</td>
<td>No</td>
<td>26±1S, 147±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ariosa Fluctus</td>
<td>32N, 147W</td>
<td>No</td>
<td>30±1N, 147±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Volcanic center</td>
<td>Location of candidate surface feature, if known</td>
<td>Detected by Galileo SSI?</td>
<td>Detected by Galileo PPR?</td>
<td>Detected by Voyager IRIS?</td>
<td>Detected from ground or HST NICMOS?</td>
<td>Plume detected? (Galileo = G Voyager = V Cassini = C)</td>
<td>Surface change detected?</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Sobo Fluctus (NIMS 124B)</td>
<td>14N, 150W</td>
<td>No</td>
<td>14±1N, 150±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Surya (NIMS 127A)</td>
<td>21.3N, 150.9W</td>
<td>No</td>
<td>22±1N, 152±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Shamash Patera</td>
<td>35S, 152W</td>
<td>No</td>
<td>34±1S, 153±1W 36±1S, 151±1W</td>
<td>No</td>
<td>Yes-same as Malik?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Prometheus Patera (0.5N, 153W)</td>
<td>Yes</td>
<td>1±3S, 155±3W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>V, G</td>
<td>Yes</td>
<td>Bright red deposits. Volcanic activity along flow. Persistent hot spot detected by NIMS and SSI in several orbits, including 131, 132. Plume moved between Voyager and Galileo.</td>
</tr>
<tr>
<td>Chaac</td>
<td>11.8N, 157.2W</td>
<td>No</td>
<td>10N, 157W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Radegast Patera</td>
<td>28S, 160W</td>
<td>No</td>
<td>27±0.5S, 160±0.5W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Culana Patera</td>
<td>19.9S, 161.5W</td>
<td>Yes</td>
<td>18±3S, 163±3W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>G</td>
<td>Yes</td>
<td>Bright red deposits. Persistent plume and hot spot. Hot spot detected by NIMS in several orbits, including 132, and by SSI in E11.</td>
</tr>
<tr>
<td>Tsui Goab Fluctus (NIMS 127D)</td>
<td>0.0, 163.3W</td>
<td>No</td>
<td>0.164W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unnamed (NIMS 132E)</td>
<td>65.9S, 168.6W</td>
<td>No</td>
<td>68±1S, 166±1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Name</td>
<td>Latitude, Longitude</td>
<td>North, South</td>
<td>East, West</td>
<td>North, South</td>
<td>East, West</td>
<td>Detected</td>
<td>Bright Red Deposits</td>
<td>Activity Details</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Michabo Patera</td>
<td>28N, 168.8W</td>
<td>Yes, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>Yes</td>
<td>Detected by NIMS in orbit 131</td>
<td></td>
</tr>
<tr>
<td>(NIMS 131G)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bright red deposits. Detected from Keck 12/2001, Persistent hot spot detected by NIMS and SSI in several orbits, including 132</td>
<td></td>
</tr>
<tr>
<td>Zamama</td>
<td>18N, 174W</td>
<td>Yes, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>Yes</td>
<td>Detected by NIMS in orbit 131</td>
<td></td>
</tr>
<tr>
<td>Aalde Patera</td>
<td>42S, 175W</td>
<td>No, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>Yes</td>
<td>Detected by NIMS in several orbits, including 127</td>
<td></td>
</tr>
<tr>
<td>(NIMS 132D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected by NIMS and SSI, Prometheus-type plume and lava flow Detected by SSI in E11</td>
<td></td>
</tr>
<tr>
<td>Volund</td>
<td>25N, 184.3W</td>
<td>Yes, No</td>
<td>Yes, No</td>
<td>No, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>Yes</td>
<td>Detected by SSI in G1 and by NIMS in E14</td>
<td></td>
</tr>
<tr>
<td>Donair Fluctus</td>
<td>24.5N, 186.2W</td>
<td>Yes, No</td>
<td>No, No</td>
<td>No, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>No</td>
<td>Detected by SSI in G1 and by NIMS in E14</td>
<td></td>
</tr>
<tr>
<td>Haokah</td>
<td>26.7S, 187W</td>
<td>No, No</td>
<td>No, No</td>
<td>No, No</td>
<td>No, No</td>
<td>No, No</td>
<td>No</td>
<td>Detected by SSI in G1 and by NIMS in E14</td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>28.1N, 192W</td>
<td>Yes, No</td>
<td>No, No</td>
<td>No, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>Yes</td>
<td>Detected by SSI in G1 and by NIMS in E14</td>
<td></td>
</tr>
<tr>
<td>Fo Patera</td>
<td>40.9N, 192.6W</td>
<td>Yes, No</td>
<td>No, No</td>
<td>No, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>Yes</td>
<td>Detected by SSI in G1 and by NIMS in E14</td>
<td></td>
</tr>
<tr>
<td>Sethlaus Patera</td>
<td>52S, 194W</td>
<td>No, No</td>
<td>No, No</td>
<td>No, No</td>
<td>No, No</td>
<td>No, No</td>
<td>No</td>
<td>Detected by SSI in G1 and by NIMS in E14</td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>32N, 199W</td>
<td>No, Yes</td>
<td>No, No</td>
<td>No, No</td>
<td>No, No</td>
<td>No, No</td>
<td>No</td>
<td>Detected by SSI in G1 and by NIMS in E14</td>
<td></td>
</tr>
<tr>
<td>Ruta Patera</td>
<td>35.2S, 199.2W</td>
<td>Yes, No</td>
<td>Yes, No</td>
<td>No, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>Yes</td>
<td>Detected by SSI in G1 and by NIMS in E14</td>
<td></td>
</tr>
<tr>
<td>Gabija</td>
<td>51S, 203W</td>
<td>No, Yes</td>
<td>Yes, No</td>
<td>No, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>Yes</td>
<td>Detected by SSI in G1 and by NIMS in E14</td>
<td></td>
</tr>
<tr>
<td>Lei-Kung Fluctus</td>
<td>38N, 204W</td>
<td>Yes, No</td>
<td>Yes (north and south Lei-Kung)</td>
<td>No, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>Yes</td>
<td>Detected by SSI in G1 and by NIMS in E14</td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>55S, 206W</td>
<td>No, Yes</td>
<td>Yes, Yes</td>
<td>No, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>Yes</td>
<td>Detected by SSI in G1 and by NIMS in E14</td>
<td></td>
</tr>
<tr>
<td>Isum Patera-N&S</td>
<td>28N, 209W</td>
<td>No, Yes</td>
<td>Yes, Yes</td>
<td>No, No</td>
<td>No, No</td>
<td>Yes, No</td>
<td>Yes</td>
<td>Detected by SSI in G1 and by NIMS in E14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32.9N, 204.7W,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bright red deposits. SSI detected two hot spots, Keck 12/2001, Activity detected by NIMS in several orbits, including 131, Detected by PPR in 127, 131, 132</td>
<td></td>
</tr>
</tbody>
</table>
| | 30.3N, 206.8W | | | | | | | | (continued)
<table>
<thead>
<tr>
<th>Volcanic center</th>
<th>Location of candidate surface feature, if known</th>
<th>Detected by Galileo SSI?</th>
<th>Detected by Galileo PPR?</th>
<th>Detected by Voyager IRIS?</th>
<th>Detected from ground or HST NICMOS?</th>
<th>Plume detected? (Galileo = G Voyager = V Cassini = C)</th>
<th>Surface change detected?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mardak</td>
<td>28.4S, 209.9W</td>
<td>Yes</td>
<td>27±2S, 211±2W</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>V, G</td>
<td>Yes</td>
</tr>
<tr>
<td>Unnamed</td>
<td>65N, 215W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Ot</td>
<td>0.9S, 217W</td>
<td>No</td>
<td>2±3S, 218±3W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>10.1S, 217.3W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Mulungu Patera</td>
<td>17.2N, 217.5W</td>
<td>Yes</td>
<td>17±3N, 219±3W</td>
<td>Yes (with Susanoo)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Kurdalagon</td>
<td>50S, 218.4W</td>
<td>No</td>
<td>47±3S, 219±3W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Patera</td>
<td>22.3N, 219.3W</td>
<td>Yes</td>
<td>21±3N, 222±3W</td>
<td>Yes (with Mulungu)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>31N, 222W</td>
<td>No</td>
<td>28±2N, 227±2W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Unnamed (NIMS 132A)</td>
<td>24S, 224W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Wayland Patera</td>
<td>32.2S, 225.5W</td>
<td>Yes</td>
<td>33±2S, 223±2W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>4S, 233W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>28S, 233W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Reiden Patera</td>
<td>13S, 236W</td>
<td>Yes</td>
<td>11±2S, 234±2W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>49S, 236W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Girru</td>
<td>22.6N, 239.3W</td>
<td>Yes</td>
<td>22±3N, 238±3W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Table A.1. Active volcanic centers on Io (cont.).

Bright red deposits. Detected by NIMS and SSI in several orbits, by PPR in I25, I27, I31, I32
Detected by PPR in I25. Possible Lei-Kung source
Detected by NIMS in several orbits including I24. Detected by PPR in I25, I27, I31, I32
Detected by SSI in E11
Detected by NIMS in several orbits, by SSI in G1. Detected by PPR in I25, I27, I31, I32
Red deposits. Detected by NIMS and PPR in several orbits
Hot spot detected by NIMS in E14 and I24. Detected by PPR in I25, I27, I31, I32
Detected by NIMS in I32
Detected by PPR in I25, I27, I31, I32
Hot spot detected by NIMS in E14
Detected by PPR in I25, I27, I31, I32
Detected by Cassini ISS on 01/01/01
Detected by PPR in I27, I31, I32
Detected by PPR in I25, I27, I31, I32
Detected by SSI in G1, by NIMS in I24 and I32, by PPR in I25, I27, I31, I32
Detected by PPR in I25, I27, I31, I32
Detected by NIMS in several orbits, by SSI in E11. Detected by PPR in I27, I31, I32
<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinates</th>
<th>Detected by NIMS</th>
<th>Detected by SSI</th>
<th>Detected by PPR</th>
<th>Detected by Voyager</th>
<th>Detected by Keck</th>
<th>Other Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llew</td>
<td>12.1N, 241.8W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pillan Patera</td>
<td>35.6S, 242.5W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Keck 12/2001</td>
<td>G, Yes</td>
</tr>
<tr>
<td>Chors Patera</td>
<td>48.5N, 249.9W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pele</td>
<td>18.4S, 255.7W</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>V, G, Yes</td>
</tr>
<tr>
<td>Unnamed</td>
<td>37N, 261W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unnamed</td>
<td>53N, 264W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Svarog Patera</td>
<td>48.5S, 265.5W</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Keck, 12/2001</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Shakuru Patera</td>
<td>23.1N, 266W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes-same as No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mithra Patera</td>
<td>58.6S, 266.7W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes-same as No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Babbar Patera</td>
<td>39.4S, 271.8W</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Daedalus Patera</td>
<td>19N, 274.4W</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>990929E, 991030C2, 991125A7, 980905B7, 0112G</td>
<td>Yes</td>
<td>990929E, 991030C2, 991125A7, 980905B7, 0112G</td>
</tr>
<tr>
<td>Unnamed</td>
<td>75, 277W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unnamed</td>
<td>13S, 278W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Atar Patera</td>
<td>31N, 278W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unnamed</td>
<td>49.9N, 278.6</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes, Keck, 12/2001</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Viracocha Patera</td>
<td>61.4S, 281W</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected by Voyager, Keck on 12/2001</td>
</tr>
</tbody>
</table>

Detected by NIMS in 132. Detected by PPR in 125, 127, 131, 132
Detected by SSI in 111
Major eruption in 1997. Plume detected by SSI and HST. Persistent hot spot detected by NIMS since 1996 (G2). Caldera, fissure vent, lava flows identified by SSI
Detected by PPR in 127, 131, 132
Voyager I detection
Large, bright red deposits. Plume detected also by HST. Very persistent hot spot detected by NIMS, SSI, and PPR numerous times
Detected by PPR in 127, 131, 132
Detected by PPR in 127, 131, 132
Detected by NIMS, SSI, and PPR in several orbits
Very low albedo. Detected by PPR in 127, 131, 132
Red deposits. SSI detected hot spot north of patera. Detected by PPR in 125, 127, 131, 132
Detected by NIMS in several orbits, by PPR in 125, 127, 131, 132
Red deposits. Detected numerous times from ground. Detected as a hot spot by PPR in 125, 127, 131, 132

Detected by PPR in 127, 131, 132
Detected by PPR in 127, 131, 132
Detected by PPR in 127, 131, 132
Observed by Keck on 12/2001

(continued)
Table A.1. Active volcanic centers on Io (cont.).

<table>
<thead>
<tr>
<th>Volcanic center</th>
<th>Location of candidate surface feature (if known)</th>
<th>Detected by Galileo SSI?</th>
<th>Detected by Galileo PPR?</th>
<th>Detected by Voyager NICMOS?</th>
<th>Plume detected?</th>
<th>Surface change detected?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulgen Patera</td>
<td>40.4S, 287.7W</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>N6?, D?, Keck</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Hephaestus Patera</td>
<td>1.9N, 290.1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Keck</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lerna Regio</td>
<td>62S, 292W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Vivasvant Patera</td>
<td>75.1N, 295W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Gibil Patera</td>
<td>15S, 295W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dazhbog Patera</td>
<td>54.3N, 301.1W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>N13, Keck</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rarog</td>
<td>41.4S, 304.9W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>44±1S, 302±2W</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Unnamed Keck "I")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sengen Patera</td>
<td>32.5S, 304W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>9506P, N6?, D?, Keck (12/2001)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Unnamed (Keck “M”)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>61±2S, 305±2W</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mihr Patera</td>
<td>16.2S, 305.7W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Keck (12/2001)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Amaterasu Patera</td>
<td>36.3N, 306.2W</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Maybe</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Loki Patera</td>
<td>12.7N, 308.8W</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Numerous ground-based observations, N1</td>
<td>V</td>
<td>Yes</td>
</tr>
<tr>
<td>Location</td>
<td>Longitude</td>
<td>Latitude</td>
<td>Plume Detected</td>
<td>Red Deposits</td>
<td>Hot Spot Detected</td>
<td>HST Observations</td>
<td>Detected by</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Aten Patera</td>
<td>48.2S, 310.5W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by PPR in 125, 127, 131, 132</td>
</tr>
<tr>
<td>Kiniich Atah</td>
<td>50.4N, 311W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Detected by NICMOS (50.3±5N, 318.8±8W)</td>
</tr>
<tr>
<td>Heno Patera</td>
<td>57S, 311W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by PPR in 125, 127, 131, 132</td>
</tr>
<tr>
<td>Mazda Catena</td>
<td>9.4S, 314.9W</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Detected by PPR in 127, 131, 132</td>
</tr>
<tr>
<td>Némia</td>
<td>785, 320W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by PPR in 125, 127, 131, 132</td>
</tr>
<tr>
<td>Manua Patera</td>
<td>35.2N, 321.6W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Detected by PPR in 127, 131, 132</td>
</tr>
<tr>
<td>Argos Planum</td>
<td>47S, 322W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by PPR in 125, 127, 131, 132</td>
</tr>
<tr>
<td>Tol-Ava Patera</td>
<td>2N, 322W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by PPR in 127, 131, 132</td>
</tr>
<tr>
<td>Ru Patera</td>
<td>8.3S, 325.2W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>G</td>
<td>Detected by PPR in 125, 127, 131, 132</td>
</tr>
<tr>
<td>Unnamed (Keck “L”)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detected from Keck (12/2001; de Pater et al., 2003)</td>
</tr>
<tr>
<td>Unnamed</td>
<td>40.5S, 326.3W</td>
<td>Yes</td>
<td>36±9.9, 324±9W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by NIMS in C22. NIMS hot spot could also be from feature at 40.5S, 326.3W</td>
</tr>
<tr>
<td>Fuchi Patera</td>
<td>28.3N, 327.7W</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>9606G? N4, D, Keck 12/2001</td>
<td>No</td>
<td>Red deposits, hot spot detected by SSI in several orbits. Detected by PPR in 127, 131, 132</td>
</tr>
<tr>
<td>Huo Shen Patera</td>
<td>15S, 329W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>HST changes (Spencer et al., 1997).</td>
</tr>
<tr>
<td>Dongo Patera</td>
<td>16.6N, 332W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by PPR in 127, 131, 132</td>
</tr>
<tr>
<td>Acala Fluctus</td>
<td>11N, 337W</td>
<td>Yes</td>
<td>Yes</td>
<td>N3, D</td>
<td>G</td>
<td>Yes</td>
<td>Detected by SSI in E14, PPR in 127, 131, 132</td>
</tr>
<tr>
<td>Surt</td>
<td>44.9N, 337.1W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>9606E7, N12, 0102A, Keck 12/2001</td>
<td>No</td>
<td>Pele-type plume deposits observed by Voyager 2. Outbursts observed on 02/2001</td>
</tr>
<tr>
<td>Creidne Patera</td>
<td>52.4S, 343.2W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Tentative identification of hot spot location</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Volcanic center</th>
<th>Location of candidate surface feature, if known</th>
<th>Detected by Galileo SSI?</th>
<th>Detected by Galileo PPR?</th>
<th>Detected by Voyager IRIS?</th>
<th>Detected from ground or HST NICMOS?</th>
<th>Plume detected?</th>
<th>Surface change detected?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unnamed</td>
<td>3.1N, 350.4W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by SSI in several orbits</td>
</tr>
<tr>
<td>Tiermes Patera</td>
<td>22.2N, 350.4W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by PPR in I25, I27, I31, I32</td>
</tr>
<tr>
<td>Euboea Fluctus</td>
<td>45S, 352W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Pelé-type plume deposits, bright red</td>
</tr>
<tr>
<td>Unnamed (Keck “R”)</td>
<td>Possibly Mama Patera at 10.6S, 356.5W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected from Keck (12/2001, De Pater et al., 2004)</td>
</tr>
<tr>
<td>Unnamed</td>
<td>4.8N, 356.1W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Detected by SSI in several orbits</td>
</tr>
<tr>
<td>Fjorgynn Fluctus</td>
<td>12N, 358W</td>
<td>Maybe (16.0N, 3.8W)</td>
<td>No</td>
<td>No</td>
<td>9606D?, N10, D, Keck “N” (9±1N, 1±1W)</td>
<td>No</td>
<td>Yes</td>
<td>Possibly detected by SSI in orbit E15. Detected from Keck (12/2001; De Pater et al., 2004)</td>
</tr>
<tr>
<td>Volcanic center</td>
<td>Location of candidate surface feature, if known</td>
<td>Galileo SSI?NIMS Tentative detection?</td>
<td>Ground-observed? HST NICMOS?</td>
<td>Surface change?</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>15.3N, 4.7W</td>
<td>No</td>
<td>9606D?</td>
<td>No</td>
<td>Tentative identification of ground-observed hot spot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cataquill Patera</td>
<td>23.5S, 18.2W</td>
<td>No</td>
<td>9906A?</td>
<td>No</td>
<td>Surface changes indicate activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ukko Patera</td>
<td>32N, 20W</td>
<td>No</td>
<td>9508A?</td>
<td>Yes</td>
<td>Tentative identification of ground-observed hot spot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>19.4N, 23.3W</td>
<td>No</td>
<td>0011A?</td>
<td>No</td>
<td>Faint spot in SSI G8, E15 images</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lei-Zi Fluctus NIMS 132</td>
<td>14N, 45W</td>
<td>No</td>
<td>9606C?</td>
<td>No</td>
<td>New plume deposits detected by SSI in orbit C9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wabasso Patera</td>
<td>55N, 73.8W</td>
<td>NIMS at 39±1N, 69±1W</td>
<td>No</td>
<td>No</td>
<td>Possibly detected by NIMS in 132, very faint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Poliahu”</td>
<td>19.4S, 81.8W</td>
<td>NIMS at 22S, 168W</td>
<td>0011B?</td>
<td>No</td>
<td>Dark pattern. May be same hot spot as above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shango</td>
<td>31.7N, 99.7W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Reported at 22±5S, 79±5W by Goguen et al. (1998) as very bright eruption in 1986. Same as I32J?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIMS C30</td>
<td>53S, 148W</td>
<td>NIMS</td>
<td>No</td>
<td>No</td>
<td>Faint spot in SSI eclipse image</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>25.7S, 168.2W</td>
<td>SSI at 22S, 168W</td>
<td>No</td>
<td>No</td>
<td>Possibly detected by NIMS in C30, very faint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Namarrkun</td>
<td>16.1N, 175.7W</td>
<td>SSI</td>
<td>No</td>
<td>No</td>
<td>Faint spot detected by SSI in E11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kami-Nari Patera</td>
<td>8S, 234W</td>
<td>SSI</td>
<td>No</td>
<td>No</td>
<td>Identification based on SSI data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIMS 132</td>
<td>NIMS at 23±3N, 248±3W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Pillan-type plume deposits detected by SSI in C21, I24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>38S, 291W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Possibly detected by NIMS in 132, very faint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khalla Patera</td>
<td>5.7N, 303.4W</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Low albedo and bright red materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed</td>
<td>2S, 352W</td>
<td>Yes</td>
<td>Yes?</td>
<td>No</td>
<td>Probably site of hot spots observed by University of Hawaii AO 06/1997</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Tentative identification of ground-observed hot spot
- Surface changes indicate activity
- Faint spot in SSI G8, E15 images
- New plume deposits detected by SSI in orbit C9
- Possibly detected by NIMS in 132, very faint
- Dark pattern. May be same hot spot as above
- Reported at 22±5S, 79±5W by Goguen et al. (1998) as very bright eruption in 1986. Same as I32J?
- Faint spot in SSI eclipse image
- Possibly detected by NIMS in C30, very faint
- Faint spot detected by SSI in E11
- Identification based on SSI data
- Pillan-type plume deposits detected by SSI in C21, I24
- Possibly detected by NIMS in 132, very faint
- Low albedo and bright red materials
- Probably site of hot spots observed by University of Hawaii AO 06/1997
- Faint spot in SSI G8 eclipse image. Possibly same as hot spot detected by C. Dumas on 6/3/98 at 6±3S, 358±3W and by Keck (Keck “R”)
Appendix 2: Ionian mountains identified to date

Elizabeth P. Turtle, Windy L. Jaeger, and Paul M. Schenk

List of the 135 Ionian mountains positively identified to date, documenting locations, heights, geomorphic classification (tectonic or volcanic), and proximity to paterae (compiled by re-examining and attempting to minimize discrepancies between the lists published in Schenk et al., 2001, and Jaeger, 2005). The geographic positions of adjacent paterae are also noted.
Table A.3. Ionian mountains.

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Mountain position</th>
<th>Height (km)</th>
<th>Tectonic/volcanic (T/V)</th>
<th>Number of paterae in contact with mountain</th>
<th>Patera(e) position(s) (latitude (°), longitude (°))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latitude (°)</td>
<td>Longitude (° West)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L o c a t i o n</td>
<td>Mountains</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lat. 38.2</td>
<td>Long. 2.8</td>
<td>4.2</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. 30.4</td>
<td>Long. 7.3</td>
<td>4.8</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. 86.0</td>
<td>Long. 8.0</td>
<td>6.1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. 36.6</td>
<td>Long. 10.1</td>
<td>8.2</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Lat. -12.5</td>
<td>Long. 14.7</td>
<td>9.5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. 31.2</td>
<td>Long. 24.7</td>
<td>6.1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. -24.0</td>
<td>Long. 25.0</td>
<td>6.5</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Lat. -35.4</td>
<td>Long. 25.7</td>
<td>3.0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. -84.9</td>
<td>Long. 28.9</td>
<td>3.8</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Lat. -10.4</td>
<td>Long. 29.1</td>
<td>>8.0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>Ethiopia Planum</td>
<td>Lat. -44.1</td>
<td>Long. 30.0</td>
<td>3.0-4.5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. 35.0</td>
<td>Long. 30.1</td>
<td>>8.0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. 30.1</td>
<td>Long. 31.8</td>
<td>3.9</td>
<td>T</td>
<td>1 (or 2)</td>
</tr>
<tr>
<td></td>
<td>Lat. -27.2</td>
<td>Long. 33.8</td>
<td>3.5-5.0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>Pan Mensa</td>
<td>Lat. -50.2</td>
<td>Long. 34.4</td>
<td>5.0</td>
<td>T</td>
<td>1 (or 2)</td>
</tr>
<tr>
<td></td>
<td>Lat. 70.0</td>
<td>Long. 36.0</td>
<td>10.7</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. -87.4</td>
<td>Long. 36.4</td>
<td>1.0-2.9</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. 38.7</td>
<td>Long. 40.5</td>
<td>3.5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. 18.39</td>
<td>Long. 43.5</td>
<td>5.9</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. -25.4</td>
<td>Long. 43.7</td>
<td>3.5-5.5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>Haemus Montes</td>
<td>Lat. -69.7</td>
<td>Long. 47.7</td>
<td>8.4-10.8</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Lat. 69.9</td>
<td>Long. 50.6</td>
<td>3.8</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. -11.9</td>
<td>Long. 55.8</td>
<td>3.8</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lat. 42.0</td>
<td>Long. 57.0</td>
<td>11.2</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>Location</td>
<td>x1</td>
<td>y1</td>
<td>slope</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Mongibello Mons</td>
<td>22.9</td>
<td>59.5</td>
<td>1.8</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-15.8</td>
<td>60.8</td>
<td>>5.1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>63.3</td>
<td>60.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>47.8</td>
<td>62.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6.7</td>
<td>63.1</td>
<td>>2.9</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>22.6</td>
<td>66.6</td>
<td>8.6</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15.5</td>
<td>67.2</td>
<td>>1.5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-25.6</td>
<td>68.9</td>
<td>1.4</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>39.3</td>
<td>69.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shamshu Mons</td>
<td>-11.3</td>
<td>71.7</td>
<td>2.9</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>33.8</td>
<td>72.2</td>
<td>7.4</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-7.4</td>
<td>78.7</td>
<td>4.3</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>40.5</td>
<td>79.6</td>
<td>2.5</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-9.4</td>
<td>81.6</td>
<td>4.5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2.1</td>
<td>82.3</td>
<td>11.1</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>25.0</td>
<td>83.3</td>
<td>6.2-6.4</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>14.2</td>
<td>84.7</td>
<td>3.1-4.0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>17.6</td>
<td>86.8</td>
<td>2.4</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>40.5</td>
<td>91.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39.3</td>
<td>93.7</td>
<td>8.2</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>Skythia Mons</td>
<td>25.7</td>
<td>98.8</td>
<td>5.5-6.0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15.4</td>
<td>104.0</td>
<td>6.5</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-20.4</td>
<td>107.8</td>
<td>4.5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-10.3</td>
<td>113.2</td>
<td>6.0-6.5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>Monan Mons</td>
<td>62.1</td>
<td>116.6</td>
<td>2.0</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>54.2</td>
<td>120.0</td>
<td>3.0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>Tvashtar Mensae</td>
<td>-63.8</td>
<td>120.9</td>
<td>2.7-4.0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-16.5</td>
<td>121.1</td>
<td>9.2-9.5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>58.8</td>
<td>122.4</td>
<td>6.0-6.6</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-13.0</td>
<td>124.2</td>
<td>5.0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-26.3</td>
<td>124.5</td>
<td>3.9-6.0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45.6</td>
<td>125.9</td>
<td>5.0-7.2</td>
<td>T</td>
<td>1</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Feature name</th>
<th>Mountain position</th>
<th>Height (km)</th>
<th>Tectonic/volcanic</th>
<th>Number of paterae</th>
<th>Patera(e) position(s) (latitude (°), longitude (°))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latitude (°)</td>
<td>Longitude (°West)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euxine Mons</td>
<td>26.5</td>
<td>126.2</td>
<td>6.0–7.7</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>14.5</td>
<td>127.2</td>
<td>3.0–3.3</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-42.5</td>
<td>129.7</td>
<td>3.2–4.5</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>Seth Mons</td>
<td>-10.3</td>
<td>134.0</td>
<td>7.0–7.5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-19.4</td>
<td>148.6</td>
<td>2.0</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-37.0</td>
<td>148.7</td>
<td>>3.0</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-64.2</td>
<td>157.2</td>
<td>1.7</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>28.9</td>
<td>159.5</td>
<td>3.0</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>Tohil Mons</td>
<td>-28.9</td>
<td>160.3</td>
<td>9.0–9.4</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>-60.8</td>
<td>161.6</td>
<td>1.1–2.2</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>Thomagata</td>
<td>47.0</td>
<td>162.0</td>
<td>2.2–5.5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-23.9</td>
<td>171.9</td>
<td>3.9–4.0</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>16.8</td>
<td>173.7</td>
<td>1.5</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>18.7</td>
<td>174.4</td>
<td>1.5</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>64.5</td>
<td>174.8</td>
<td>3.5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>Dorian Montes</td>
<td>-20.7</td>
<td>188.7</td>
<td>2.4–5.5</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-21.5</td>
<td>193.0</td>
<td>8.5–9.2</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>59.2</td>
<td>195.5</td>
<td>8.6–11.0</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-73.1</td>
<td>196.8</td>
<td>7.0–7.3</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>73.8</td>
<td>200.5</td>
<td>7.0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-52.0</td>
<td>200.9</td>
<td>1.7</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>Rata Mons</td>
<td>-35.7</td>
<td>201.3</td>
<td>7.0–8.1</td>
<td>T</td>
<td>1</td>
</tr>
</tbody>
</table>

Table A.3. Ionian mountains (cont.).
<table>
<thead>
<tr>
<th>Location</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Altitude</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorian Montes</td>
<td>-26.8</td>
<td>201.8</td>
<td>7.7</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>-57.1</td>
<td>203.9</td>
<td>1.8</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>53.0</td>
<td>206.8</td>
<td>9.0</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>-35.1</td>
<td>210.3</td>
<td>4.5</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>212.7</td>
<td>>3.3</td>
<td>T</td>
</tr>
<tr>
<td>Ot Mons</td>
<td>4.1</td>
<td>215.5</td>
<td>3.6</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>-27.2</td>
<td>236.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ionian Mons</td>
<td>8.6</td>
<td>236.1</td>
<td>12.7</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>-29.9</td>
<td>245.5</td>
<td>5.0-5.3</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>-64.8</td>
<td>248.2</td>
<td>2.8-6.0</td>
<td>T</td>
</tr>
<tr>
<td>Nemea Planum</td>
<td>-69.9</td>
<td>248.7</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Nile Montes</td>
<td>50.2</td>
<td>249.2</td>
<td>9.0</td>
<td>T</td>
</tr>
<tr>
<td>Nile Montes</td>
<td>57.5</td>
<td>253.4</td>
<td>6.5</td>
<td>T</td>
</tr>
<tr>
<td>Danube Planum</td>
<td>-21.5</td>
<td>257.6</td>
<td>3.4-5.5</td>
<td>T</td>
</tr>
<tr>
<td>Egypt Mons</td>
<td>-40.2</td>
<td>258.9</td>
<td>10.0</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>7.8</td>
<td>262.0</td>
<td>4.0</td>
<td>T</td>
</tr>
<tr>
<td>Boösaule Montes</td>
<td>-2.2</td>
<td>263.9</td>
<td>7.0</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>23.6</td>
<td>269.0</td>
<td>7.0-7.2</td>
<td>T</td>
</tr>
<tr>
<td>Boösaule Montes</td>
<td>-2.8</td>
<td>269.2</td>
<td>8.5</td>
<td>T</td>
</tr>
<tr>
<td>Boösaule Montes</td>
<td>-9.6</td>
<td>272.3</td>
<td>17.5-18.2</td>
<td>T</td>
</tr>
<tr>
<td>Silpium Mons</td>
<td>-51.8</td>
<td>273.4</td>
<td>5.5</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>-31.3</td>
<td>273.6</td>
<td>4.6</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>-5.4</td>
<td>279.1</td>
<td>4.0</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>279.3</td>
<td>4.0</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>37.8</td>
<td>283.4</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>284.5</td>
<td>4.5</td>
<td>T</td>
</tr>
<tr>
<td>Ulgen Montes</td>
<td>-39.1</td>
<td>284.7</td>
<td>4.0-6.0</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
<td>287.0</td>
<td>4.2-8.4</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>-23.3</td>
<td>295.2</td>
<td>3.9-6.7</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>-36.3</td>
<td>299.1</td>
<td>3.7</td>
<td>T</td>
</tr>
</tbody>
</table>
Table A.3. Ionian mountains (cont.).

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Mountain position</th>
<th>Height (km)</th>
<th>Tectonic/volcanic (T/V)</th>
<th>Number of paterae in contact with mountain</th>
<th>Patera(e) position(s) (latitude (*), longitude (°))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynx Mensa</td>
<td>-62.1 304.0</td>
<td>4.5</td>
<td>T</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-44.6 310.1</td>
<td>>1.7</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Argos Planum</td>
<td>-47.7 318.3</td>
<td>3.2</td>
<td>T</td>
<td>1</td>
<td>-48.6; 320.1</td>
</tr>
<tr>
<td>Carancho Montes</td>
<td>-5.0 318.7</td>
<td>8.1-8.5</td>
<td>T</td>
<td>1</td>
<td>1.9, 322.4</td>
</tr>
<tr>
<td></td>
<td>71.0 320.8</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60.5 324.0</td>
<td>4.9</td>
<td>T</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.8 331.7</td>
<td>4.9- >6.0</td>
<td>T</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Iopolis Planum</td>
<td>-34.9 333.1</td>
<td>4.1-4.5</td>
<td>T</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43.7 334.7</td>
<td></td>
<td></td>
<td>1</td>
<td>45.0, 337.1</td>
</tr>
<tr>
<td>Euboea Montes</td>
<td>-48.0 336.2</td>
<td>10.3-13.4</td>
<td>T</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56.0 337.0</td>
<td>9.6</td>
<td>T</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 341.2</td>
<td>7.0</td>
<td>T</td>
<td>3</td>
<td>-0.1, 340; 0.7, 341; 0.7, 344 (-10.9, 343.3)</td>
</tr>
<tr>
<td></td>
<td>-24.7 345.1</td>
<td>2.5</td>
<td>T</td>
<td>1 (or 2)</td>
<td>-22.2, 345.4 (-26.6, 343.3)</td>
</tr>
<tr>
<td></td>
<td>1.6 346.9</td>
<td>4.5</td>
<td>T</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Euboea Montes</td>
<td>-51.4 348.6</td>
<td>2.5</td>
<td>T</td>
<td>1</td>
<td>-52.4, 343.2</td>
</tr>
<tr>
<td>Apis Tholus</td>
<td>-10.9 348.7</td>
<td></td>
<td>V</td>
<td>1</td>
<td>-10.9, 348.7</td>
</tr>
<tr>
<td>Inachus Tholus</td>
<td>-15.8 348.8</td>
<td>1.8</td>
<td>V</td>
<td>1</td>
<td>-15.8, 348.8</td>
</tr>
<tr>
<td>Echo Mensa</td>
<td>-79.9 355.7</td>
<td>0.7-3.0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Possible mountains</td>
<td>22.4 151.6</td>
<td>>0.8</td>
<td></td>
<td>1</td>
<td>21.1, 151.6</td>
</tr>
<tr>
<td></td>
<td>20.3 157.3</td>
<td>>0.9</td>
<td></td>
<td>1</td>
<td>19.4, 158.8</td>
</tr>
<tr>
<td></td>
<td>13.4 160.7</td>
<td></td>
<td></td>
<td>2</td>
<td>11.3, 155.8; 11.8, 157.2</td>
</tr>
<tr>
<td></td>
<td>-1.7 183.7</td>
<td>>0.7</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.6 185.8</td>
<td>>0.8</td>
<td></td>
<td>1</td>
<td>6.3, 187.6</td>
</tr>
</tbody>
</table>

Note: Values for longitude increase to the west.
Index

^{26}Al decay, 75
^{60}Fe decay, 75

absorption band, 17
Acala
Fluctus, 42, 321
plume, 165, 172
accretion disk model, 61–66
see also circum-Jovian accretion disk
accretion of Io, 73–80
composition, 73–77
initial thermal state, 77–80
adaptive optics (AO), 294–297
ADONIS AO system, 294
extreme AO system, 296
Keck AO system, 295–297
ADONIS, 288
Ah Peku Patera, 118, 313
Aidne Patera, 317
AKR, see auroral kilometric radiation
albedo, 8, 12–13, 17
bolometric, 98
low-albedo features, 139
patterns, 137
spectral geometric albedo
Alfvén wing model, 41
allotropes of sulfur, 21
Altijirra Patera, 313
Aluna Patera, 312

Amalthea, 6
Galileo fly-by, 39, 53
Amaterasu Patera, 320
Amirani, 48, 313
flow fields, 144
plume, 164
ammonia, 14
AO, see adaptive optics
Apis Tholus, 114, 330
arcuate scarps, 120
Argos Planum, 321, 330
Arinna Fluctus, 315
Arusha Patera, 312
ASI, see atmosphere structure instrument
asteroids, 73–74
asthenospheric diapirs, 122–123
Astronomical Unit (AU), 6
Atar Patera, 319
Aten Patera, 41, 321
atmosphere, 231–259, 293
atomic oxygen, 245
atomic species, 244–247
atomic sulfur, 245
escaping materials, 267, 269–270
ejection processes, 267–270
ionosphere, 247–248
interaction with Jovian magnetosphere
265–266, 279–282, 293
minor molecular species, 242–244
atmosphere (cont.)
models, 233, 248–256
modern buffered models, 248–249
photochemical models, 252–254
radiative models, 250–252
unified models, 254–256
volcanic gas composition models, 249–250
plasma torus interaction, 267–270
potassium, 244–247
pressure, 17
sodium, 244–247
SO$_2$ atmosphere, 234–242
infrared observations, 242
mm observations, 234–236
ultraviolet observations, 236–242
structure instrument (ASI), 36
volcanic vs. sublimation nature, 257–258

AU, see Astronomical Unit
auroral kilometric radiation (AKR), 48

Babbar Patera, 319
Balder Patera, 152
Barnard, E.E., 6–7
Beta Scorpii, 17
bolometric albedo, see albedo
Boösaule Montes, 329
Bosphorus Regio, 151
black-body
 flux peak, 13
temperature, 76
bloedite, 20
blowout model, 62
brightening
 anomalous, 13–14
global, 14
 post-eclipse, 15, 195, 202
brightness temperature, 13, 234
infrared, 21
Burnham, S.W., 7
Byerlee’s Law, 122, 127

Callisto, 6, 61, 70
density, 9, 17
Galileo fly-by, 39, 43
Camaxtlí Patera, 315
Capaneus Mensa, 327

Carancho Montes, 330
carbonaceous chondrites, 73–75
 see also Tagish Lake carbonaceous chondrite
Cassini, J.D., 6
Cassini–Huygens, 15, 51, 288
Cataquili Patera, 323
Catha Patera, 312
Caucasus Mons, 329
celestial mechanics, 36
Chaac, 316
 Chaac–Camaxti region, 51, 150, 152
 Patera, 45, 52
charged particle, 16
charge exchange, 269
chemistry of plumes, 178–179
chlorine compounds, 218
chondritic meteorites, 79, 97
Chors Patera, 319
circum-Jovian accretion disk, 66–73
circumstellar disks, 65
coaaccretion model, 62, 64
coloration, 8, 25, 140–142, 193, 207
Columbia River Flood Basalt, 147
composition, 73–77, 96–97
 accretion of Io, 73–80
 chemical composition of volcanic products, 140–142
 core, 97, 194, 288
 crust, 126–127
 mantle, 97, 194
 surface, 21, 24, 193–221
 metals, salts, and halogen compounds, 217–219
 silicates, 220–221
 spectroscopic determination of, 197–221
 sulfur, 202–217
 water and hydroxides, 219–220
compositional faulting, 121
compressive stress, 122
core, 97, 194, 288
core accretion–gas capture model, 61–66
corona, 268
Coulomb failure, 122
Creidne Patera, 321
Crimea Mons, 329
crustal composition and stability, 126–127
C-type asteroids, 73
Cuchi Patera, 315
Culann, 41
Culann–Tohil region, 151
Patera, 316
plume, 165, 171
cyclooctyl sulfur, see sulfur; S₈

Daedalus Patera, 319
Danube Planum, 121, 329
Darwin–Radau relationship, 94
Dazhbog Patera, 54, 320
DDS, see dust detector subsystem
density, 9, 17, 90, 93, 194
2-layer hydrostatic model, 94–95
3-layer models, 95–96
core, 94–95
shell, 94–95
structure 93–96
deposits, see plume …
diameter of Io, 8, 17
Barnard’s diameter, 7
Michelson’s diameter, 8

disappearance event, 13–14
Donar Fluctus, 317
Doppler tracking, 91, 93
Dorian Montes, 328–329
downslope creep, 119
D-type asteroids, 73–74
dust, 267
detector subsystem (DDS), 36–37
plumes, 167–171
Dusurra, 313

echelle spectrograph, 18
Echo Mensa, 330
eclipse curve, 8, 13–15
Egypt Mons, 329
Ekhi, 312
electrodynamic coupling to Jupiter’s
ionosphere, 282–284
electron
flux, 194
impact dissociation, 268–269
impact ionization, 268–269, 271, 281
elemental sulfur see sulfur
Emakong Patera, 55, 117, 149, 313
endogenic emission, 98
evergetic particles detector (EPD), 36–37

energetic particle instrument (EPI), 36
EPD, see energetic particles detector
EPI, see energetic particle instrument
ESO 3.6-m telescope, 288
Estan Patera, 118, 312
Ethiopia Planum, 326
Etna, Italy, 134
Euboea
Fluctus, 41, 322
Mons, 116, 119, 330
Europa, 6, 80–81
density, 9, 17
Galileo fly-by, 39
EUV, see extreme-ultraviolet spectrometer
Euxine Mons, 110, 118, 328
evaporate salts, 195
evaporite hypothesis, 19–20
evolution of Io, 61–82
extreme-ultraviolet spectrometer (EUV), 36

Faint Object Spectrograph (FOS), 238
far-ultraviolet emission, 15
ferric sulfate, 20
flow fields
Amirani, 144
Maui, 144
Pillan, 145, 147
Pu‘u’O‘o’-Kupaianaha, 145
Zamama, 117
flux tube, 194
fly-by, Galileo, 43–50
A34, 55–56
G29, 51–54
I24, 37, 44–48
I25, 44, 48–50
I27, 50, 52
I31, 50–54
I32, 50–55
I33, 50, 55
I35, 50, 55
“the lost Io fly-by”, 38–41
Fo Patera, 317
FOS, see Faint Object Spectrograph
Fuchi Patera, 321
future missions to Io, 299–302
JUNO, 300
New Horizons, 3, 288, 300
Fjorgynn Fluctus, 322
Index

Gabija, 317
Galilei, Galileo, 1, 5–6
Galileo, 14, 35–56, 288
atmosphere structure instrument (ASI), 36
celestial mechanics, 36
dust detector subsystem (DDS), 36–37
energetic particle instrument (EPI), 36
energetic particles detector (EPD), 36–37
Europa mission (GEM), 37, 43–50
extreme-ultraviolet spectrometer (EUV), 36
fly-by, 43–50
A34, 55–56
G29, 51–54
I24, 37, 44–48
I25, 44, 48–50
I27, 50, 52
I31, 50–54
I32, 50–55
I33, 50, 55
I35, 50, 55
“the lost Io fly-by”, 38–41
heavy ion counter (HIC), 36–37
helium abundance detector (HAD), 36
high-gain antenna, 38
Jupiter impact, 50
lightning and radio emissions detector (IRD), 36
low-gain antenna (LGA), 38, 40
magnetometer (MAG), 36–37
millennium mission (GMM), 50–55
mission plan, 38
nephelometer (NEP), 36
orbits, 39, 43–55
net flux radiometer (NFR), 36
near-infrared mapping spectrometer (NIMS), 35–37, 39, 41–43, 45, 47–48, 51, 54–55, 140, 173
neutral mass spectrometer (NMS), 36
nominal mission, 37, 41–43
photopolarimeter and radiometer (PPR), 36–37, 48, 98
plasma detector subsystem (PLS), 36–37
plasma wave subsystem (PWS), 36–37
radio propagation, 36
solid-state imaging system (SSI), 35–36, 39, 41–43, 45, 48, 51
ultraviolet spectrometer (UVS), 36–37
volcanism observations, 140–153
Ganymede, 6, 80–81
density, 9, 17
density waves, 70
Galileo fly-by, 39, 50
spectra, 12
gas plumes, 171–173
gas-starved disk model, 63, 69–71, 73, 75, 80
GHRS, see Goddard High-Resolution Spectrograph
giant planet formation, 61–66
Giant Segmented Mirror Telescopes (GSMT), 297
Gibil Patera, 320
Girru, 45, 318
Gish Bar, 41
Mons, 110, 116, 118, 327
Patera, 117–118, 312
Goddard High-Resolution Spectrograph (GHRS), 238
gravitational field, 91–92
gravity, surface, 90
gravity-assist trajectory, 17
GSMT, see Giant Segmented Mirror Telescopes
gyration velocity, 271
gyroenergy, 271–272
gyro motions of ions/electrons, 268, 272
H2O ice, 11–12, 17
HAD, see helium abundance detector
Haems Montes, 326
Hale 5-m telescope, 12
Haokah Patera, 45, 317
headscars, 119
heat flow, see surface heat flow
heavy ion counter (HIC), 36–37
helium abundance detector (HAD), 36
hematite, 20
Hen'o Patera, 321
Hephaestus Patera, 320
Hertzsprung, E., 8
Hertzsprung–Russell luminosity–temperature diagram, 66
Hi'iaka
Montes, 113, 116, 124, 327
Patera, 124, 311
HIC, see heavy ion counter
high-gain antenna, 38
Index 335
decametric radio emission, 265
electrodynamic coupling of ionosphere and Io, 282–284
magnetosphere, 15, 18, 50, 137, 194, 265, 268
magnetotail, 277
interaction with Io’s atmosphere, 265–266, 279–282, 293
Jupiter orbit insertion (JOI), 38–41
plasma torus coupling with ionosphere, 277

Kami-Nari Patera, 323
Kanehekil, 42, 45, 310
plume, 164
Karei Patera, 310
Keck 10-m telescope, 288, 295–296
Kepler, laws of planetary motion, 6
Khalla Patera, 323
kinematic disk viscosity, 66
Kinich Ahau, 321
Kuiper, G.P., 10
Kurdalagon Patera, 318

landsides, 118–119
Laplace, Pierre Simon, 1, 6
Laplace resonance, 1, 6, 80–81, 102, 104–105, 289
lava on Earth
andesitic, 134
basalts, 134
’a’a, 134–135
continental flood basalts (CFBs), 135
pahoehoe, 134–135
carbonatites, 134
dacitic, 134
felsic, 134
fire fountains, 133
flows, 133
high-temperature, 133
lakes, 133
mafic, 133
Precambrian komatiite flows, 135
rhyolitic, 134
silicate lava lakes, 133
submarine, 134
sulfur flows, 134–136

Hill Sphere, 269
history of exploration, 5–28
Hodema, G.B., 6
hot spots, 1, 41–42, 45, 49, 97–98, 139
HST, see Hubble Space Telescope
Hubble Space Telescope (HST), 14–15, 43, 140, 266, 287–288
Faint Object Spectrograph (FOS), 238
plume observations, 171
Huo Shen Patera, 321
hydrated silicates, 195
hydrochloric acid, 219
hydroxides, 220
impact crater, 22
Inachus Tholus, 114, 330
infrared astronomy, 11
infrared observation, 12, 22
infrared interferometer spectrometer (IRIS), 98, 137
infrared spectrum, 23
interior of Io, 89–105
International Jupiter Watch, 196
International Ultraviolet Explorer spacecraft, 21, 24
ionosphere, 15, 247–248
Ionian Mons, 116, 329
ionization
electron impact ionization, 268–269, 271, 281
lifetimes, 269
of neutral cloud, 267–270, 272
ionized species, 21, 23
IoPolis Planum, 330
Jo Watch, 196
“Jo week”, 19
IRAM 30-m telescope, 234
IRIS, see infrared interferometer spectrometer
Isum Patera, 317
Itzamná, 312
Iynx Mensa, 330

Janus Patera, 311
James Webb Space Telescope, 299
JOI, see Jupiter orbit insertion
JUNO, 300
Jupiter, 9
lava on Earth (cont.)
tubes, 134
ultramafic, 134
lava on Io
see also lava on Earth
compositional range, 291
flow fields
Amirani, 144
Maui, 144
Pillan, 145, 147
Pu’u O’o-Kupaianaha, 145
Zamama, 117
lava lakes, 142
pyroclastic deposits, 142
silicate lava flows, 142
Lei-Kung Fluctus, 317
Lei-Zi Fluctus, 323
Lerna Regio, 320
Lick Observatory
12-inch refractor, 6, 8
36-inch refractor, 6–7
lightning and radio emissions detector
(LRD), 36
lithosphere, 121–122
compression, 121, 123, 125
strength, 137
thickness, 124–126, 290
Llew, 319
Loki, 39, 47–48, 98, 139–140
Patera, 55, 232, 320
plume, 165
Loki–Daedalus region, 39
Love number, 91–94
low-gain antenna (LGA), 38, 40
LRD, see lightning and radio emissions
detector
MAG, see magnetometer
magnetometer (MAG), 36–37
magnetosphere, Jovian, 15, 18, 50, 137, 194, 265, 268
Malik Patera, 314
Malungga Patera, 318
Manua Patera, 321
Marduk, 41–42, 318
plume, 165
Marius (Mayr), Simon, 5–6
mass, 90
mass-wasting processes, 118–119, 126
Masubi, 45, 311
plume, 164
Maui
flow field, 144
Patera, 314
plume, 164
Mauna Loa, 134
Maxwellian distribution, 272, 276
Mazda Catena, 321
Mbali Patera, 310
McDonald Observatory 82-inch telescope, 10
melt segregation, 104
MELTS program, 126
methane, 14
Michabo Patera, 317
Michelson, A., 8
Mihir Patera, 320
Mithra Patera, 319
MMSN, see minimum-mass (Jovian) sub-nebula
minimum-mass (Jovian) sub-nebula
(MMSN), 64, 67–70
models
accretion disk model, 61–66
Alfvén wing model, 41
atmospheric models, 233, 248–256
modern buffered models, 248–249
photochemical models, 252–254
radiative models, 250–252
unified models, 254–256
volcanic gas composition models,
249–250
blowout model, 62
coccretion model, 62, 64
Galilean satellite formation models,
194–195
photochemical models, 233
plasma torus models, 272–275
plume models, 179–183
boundary conditions, 180–181
computational fluid dynamics models, 180, 182
direct simulation Monte Carlo models, 180, 182–183
stochastic–ballistic models, 180–182
time-varying disk models, 70–73
Index

Monan
Mons, 110, 118, 123, 327
Patera, 123, 312
Mongibello Montes, 113, 116, 327
Morabito, Linda, 23
mountains, 24-25, 109-127
Apis Tholus, 330
ArgoS Planum, 321, 330
association with paterae, 112
Boösaule Montes, 329
Capaneus Mensa, 327
Carancho Montes, 330
Caucasus Mons, 329
Crimea Mons, 329
crustal composition and stability, 126-127
Danube Planum, 329
Dorian Montes, 328-329
Echo Mensa, 330
Egypt Mons, 329
Ethiopia Planum, 326
Etna, Italy, 134
Euboea Fluctus, 322
Euboea Montes, 116, 119, 330
Euxine Mons, 110, 118, 328
Fjorgynn Fluctus, 322
formation mechanisms, 120-124
Gish Bar Mons, 110, 116, 118, 327
global distribution, 110-112
Haemus Montes, 326
Hi‘iaka Montes, 113, 116, 124, 327
Inachus Tholus, 330
Ionian Mons, 116, 329
Iopolis Planum, 330
Iynx Mensa, 330
Lei-Kung Fluctus, 317
Lei-Zi Fluctus, 323
lithospheric thickness, 124-126
location of, 111
mass-wasting processes, 118-119, 126
Monan Mons, 110, 118, 123, 327
Mongibello Montes, 113, 116, 327
morphology, 112-119
Nemea Planum, 329
Nile Montes, 329
Ot Mons, 329
Pan Mensa, 326
Pillan Mons, 329
Rata Mons, 328

relationship to volcanism, 112, 117-118, 121
Seth Mons, 328
Shamsho Mons, 327
Silpium Mons, 329
Skythia Mons, 327
Sobo Fluctus, 316
South Zal Mons, 116-117
stratigraphy, 119-120
structure, 116-117
surface modification processes, 118-119
Telegonus Mensae, 327
Thomagata, 328
Tohil Mons, 113-114, 116, 328
Tsü Goab Fluctus, 316
Tvashtr Mensae, 327
Ulgen Montes, 329
Zal Montes, 327

Na-D line, 16, 18
Namarrkun, 323
NASA, 18
near-infrared mapping spectrometer
(NIMS), 35-37, 41-43, 45, 47-48, 51, 54-55, 140, 173
near-infrared observation, 12, 17
Nemea, 321, 329
NEP, see nephrometer
nephrometer (NEP), 36
Neptune, 9
net flux radiometer (NFR), 36
neutral clouds, 265-272
“Neutral Cloud Theory”, 272-273
neutral mass spectrometer (NMS), 36
New Horizons, 3, 288, 300
NFR, see net flux radiometer
Nile Montes, 329
NMS, see neutral mass spectrometer
normal faulting, 121
North Zal Mons, 113, 116-117
Nusku Patera, 310

occultation photometry, 139
Orgueil meteorite, 19-20
outer asteroid belt, 73
outer planet alignment, 17
orbital evolution, 102
orbital period, 90
orbits, *Galileo*, 39, 43–55, 52

see also fly-by

orthopyroxene, 97

OSIRIS, 295

Ot, 318

Mons, 329

Overwhelmingly Large Telescope (OWL)

100-m telescope, 288, 297

OWL, see Overwhelmingly Large Telescope

oxygen

atmospheric atomic oxygen, 245

clouds, 271

ionization lifetime, 269

oxygen detection, 18

Palomar 5-m Hale telescope, 298

Pan Mensa, 326

patera

Ah Peku Patera, 313

Aidne Patera, 317

Altirra Patera, 313

Aluna Patera, 312

Amaterasu Patera, 320

Arusha Patera, 312

Atar Patera, 319

Aten Patera, 41, 321

Bahbar Patera, 319

Camaxtl Patera, 315

Cataquil Patera, 323

Catha Patera, 312

Chers Patera, 319

Creidne Patera, 321

Cuchi Patera, 315

Culann Patera, 316

Daedalus Patera, 319

Dazhbog Patera, 54, 320

Emakong Patera, 55, 117, 149

Estan Patera, 118, 312

Fo Patera, 317

Fuchi Patera, 321

Gibil Patera, 320

Gish Bar Patera, 117–118, 312

Heno Patera, 321

Hephaestus Patera, 320

Hi‘iaka Patera, 124, 311

Huo Shen Patera, 321

Isun Patera, 317

Janus Patera, 311

Kami-Nari Patera, 323

Karei Patera, 310

Khalia Patera, 323

Kurdalagon Patera, 318

Loki Patera, 55, 232, 320

Malik Patera, 314

Malungo Patera, 318

Manua Patera, 321

Maui Patera, 314

Mbali Patera, 310

Michabo Patera, 317

Mihr Patera, 320

Mithra Patera, 319

Monan Patera, 123, 312

Nusku Patera, 310

Pillan Patera, 319

Prometheus Patera, 316

Pyerun Patera, 319

Ra Patera, 41–42, 137

Radegast Patera, 316

Rata Patera, 317

Reiden Patera, 318

Ruauumoko Patera, 315

Ruwa Patera, 310

Sengen Patera, 320

Sethlaus Patera, 317

Shakuru Patera, 319

Shamash Patera, 316

Sigurd Patera, 312

Surt Patera, 41

Svarog Patera, 319

Thomagata Patera, 117

Tien Mu Patera, 315

Tierzmes Patera, 322

Tohil Patera, 113, 153

Tol-Ava Patera, 321

Tupan Patera, 53, 55, 150, 315

Tvashtr Paterae, 52

Ukko Patera, 323

Ulgen Patera, 320

Uta Patera, 310

Viracocha Patera, 319

Vivasvat Patera, 320

Wayland Patera, 318

Yaw Patera, 315

Zal Patera, 113, 311

Pele, 15, 44, 48, 51, 319

caldera, 52

deposits, 173-174, 206
O/S ratio, 207
phosphorus, 207
photochemical models, 233
photometry, 10
Io eclipse, 14
photoelectric, 8, 13
ultraviolet, 17
photopolarimeter and radiometer (PPR), 36-37, 48, 98
Pickering, W.H., 6, 8
pickup ions/electrons, 268, 271-273
Pillan, 39, 41-42, 44-45, 48
lava flow field, 145, 147
Mons, 329
Patera, 319
plume, 165
deposits, 174
Pioneer missions, 16-22
atmospheric detection, 231
Pioneer 10, 16-17, 288
Pioneer 11, 16, 288
plains, 25
plasma detector subsystem (PLS), 36-37
plasma torus, 21, 50, 195, 265, 267, 271-279, 294
Cassini flyby, 277
Cassini UVIS monitoring, 277-279
coupling with Jupiter's ionosphere, 277
energy flows, 274
interaction with Io's atmosphere, 267-270, 280-281
models, 272-275
radiation and plasma torus electrons, 273-274
radial structure of, 276
regions of, 275-276
vertical structure, 276
plasma wave subsystem (PWS), 36-37
PLS, see plasma detector subsystem
plume, 23, 26, 138-139, 163-188
Acala, 165, 172
Amirani, 164
chemistry, 178-179
Culann, 165, 172
deposits, 173-176
maximum ranges, 175
dust, 167-171
dynamics, 179-183
environmental interactions, 183-185
gas, 171-173
HST observations of, 171
in eclipse, 172
Kanehekili, 164
Loki, 165
Marduk, 165
Masubi, 164
Mau, 164
modeling, 179-183
Pele, 53, 165, 167, 169, 173-174, 177, 207
Pillan, 165
Prometheus, 51, 143, 164, 167-168, 170, 173-174, 184
Ra, 165
red rings, 177
sightings map, 176
sources, 176-178
Thor, 164
Tvashtar, 53, 164, 177
Volund, 165
Zamama, 114, 117, 164, 170
polarimetry, 139
potassium
atmospheric, 244-247
compounds, 217-218
emission, 18
PPR, see photopolarimeter and radiometer
Pravda, 16
pre-main-sequence (PMS) model tracks, 65
primordial disks, 66
Prometheus, 41-42, 48
concentric rings, 168
Patera, 316
plume, 51, 143, 164, 167-168, 170, 173-174, 184
deposits, 174
proton flux, 194
P-type asteroids, 73-74
Pu'O'o-Kupaianaha flow field, 145
Pyerun Patera, 319
PWS, see plasma wave subsystem
Ra Patera, 41-42, 137
Radegast Patera, 113, 316
radio burst, 18
radio propagation, 36
radius, 90
Rarog, 320
Rata
Mons, 328
Patera, 317
reappearance event, 13–14
Reiden Patera, 318
resonant scattering, 18
resurfacing rate, 24, 99, 109, 120, 137, 183,
292–293
reverse faulting, 121
rheological structure, 99–102
Roche lobes, 62
Roemer, Ole, 6
rotational brightening variation, 8
rotational deformation, 90–91
rotation rate, 90–91
Ruaumoko Patera, 315
Ruwa Patera, 310
salt pans, 195
sapping, 118–120
Saturn, 9
scanning prism spectrometer, 12
scarp, 119–120
selensulfur, 20
Sengen Patera, 320
Seth Mons, 328
Sethlaus Patera, 317
Shakuru Patera, 319
Shakura–Sunyaev α model, 67
Shamash Patera, 316
Shamshu Mons, 113, 116, 327
Shango, 323
shape of Io, 92–93
shield volcanoes, 117
Siderius Nuncius, 5
Sigurd Patera, 312
silicate, 26–27, 220–221
hydrated silicates, 195
magma, 99
volcanism, 24–26, 137, 151, 267
Silpium Mons, 329
Skythia Mons, 117–118, 327
slumping, 118–119
Sobo Fluctus, 150, 316
sodium
atmospheric, 244–247
cloud, 195, 270
compounds, 217–218
ionization lifetime, 269–270
solar nebula, 64, 66–67
solar phase function, 8
solar reflectance spectra, 198
solar wind, 50
solar zenith angle (SZA), 233, 240
solid-state imaging system (SSI), 35–36,
41–43, 45, 48, 51
South Zal Mons, 116–117
speckle interferometry, 139
spectral features of Io, 199
spectral geometric albedo, 17, 19–20
spectral reflectance, 10–11
spectrograph, echelle, 18
spectrophotometry, 10
spectroscopy, 10
determination of Io’s composition,
197–221
mm-wave heterodyne spectroscopy,
234–236
SPIFFI, 295
spinfout disk model, 62–63
Spitzer Space Telescope, 66
sputtering, 23, 194, 232, 268–269
velocity distribution, 269
stratigraphy, 119–120
subsidence stress, 125
sulfur, 12, 24, 27
S₃, 205
S₄, 205–206
S₈, 19–21, 141, 205
Sₓₒ, 205
allotropes, 21, 23–26, 195, 205
atmospheric atomic sulfur, 245
chloride, 142
clouds, 271
dichloride, 142
dioxide, 208–213
atmosphere, 196, 234–242
condensation, 15, 24, 195, 210
distribution, 43, 45, 51, 239–241
evaporation, 15
frost, 15, 23–24, 27, 137, 141, 209–210,
232
gas, 15, 23, 45, 137, 232
ice, 15
ionization lifetime, 269
tlines, 234–236
physical properties, 208
radiolytic properties, 208
reflection spectra of, 24, 209
spatial distribution, 210-213
spectral properties, 208
spectroscopy and spectral mapping, 208-210
sublimation, 15, 210, 232
disulfur monoxide, 215-215
elemental, 205
impurities, 202
ionization lifetime, 269
long-chain sulfur polymers, 207
monoxide, 214, 242-243
on Io, 202-221
photolytic and radiolytic properties, 201-202
physical properties, 198-200
disulfur oxides, 205, 215
spectra of sulfur with pyrite, 203
spectra of sulfur with tellurium, 203
spectroscopic properties, 200-201
sulfates/sulfites/sulfurous acid, 216
sulfides, 216-217
trioctyl, 214-215
volcanism, 25, 196, 292
surface composition of Io, 21, 24, 193-221
metals, salts, and halogen compounds, 217-219
silicates, 220-221
spectroscopic determination of, 197-221
sulfur on Io, 202-217
water and hydroxides, 219-220
surface heat flow, 97-98, 289
Surt
Patera, 41, 321
Surya, 316
Susano, 45, 318
Svarog Patera, 319
synodic period, 6
SZA, see solar zenith angle

Tagish Lake carbonaceous chondrite, 73-75
Tawhaki, 311
tectonics, see mountains
Telegonus Mensae, 115, 117, 119-120, 327
telescopes
airborne, 297-298

Giant Segmented Mirror Telescopes (GSMT), 297
Hale 5-m telescope, 12
Hubble Space Telescope (HST), 14-15, 43, 140, 266, 287-288
IRAM 30-m telescope, 234
James Webb Space Telescope, 299
Keck 10-m telescope, 288, 295-296
Lick Observatory
12-inch refractor, 6, 8
36-inch refractor, 6-7
McDonald Observatory 82-inch telescope, 10
Overwhelmingly Large Telescope (OWL) 100-m telescope, 288, 297
Palomar 5-m Hale telescope, 298
Spitzer Space Telescope, 66
Thirty Meter Telescope (TMT), 288, 297-298
Very Large Telescope (VLT), 295
ultraviolet, 298-299
temperature
see also thermal...; surface heat flow;
endogenic emission
black-body, 76
brightness temperature, 13, 234
determination from SO2 mm-observations, 234
thermal
see also surface heat flow
emission spectra, 204
evolution, 102-105
expansion of lithosphere, 121, 125
inertia, 13
measurement, 12
outbursts, 27, 139
initial state of Io, 77-80
structure, 99-102
Thirty Meter Telescope (TMT), 288, 297-298
Thomagata, 328
Patera, 117
Thor, 54-55
eruption, 39, 53-54
plume, 164
thrust faults, 121-122
tidal deformation, 90-91
tidal energy dissipation, 6, 102
tidal heating, 22, 24, 102-103, 193, 195, 265
Tien Mu Patera, 315
Tiermes Patera, 322
time-varying Patera models, 70–73
Titan, 16
TMT, see Thirty Meter Telescope
Tol-Ava Patera, 321
topography, see mountains torus, see plasma torus
Trojan clouds, 73
Tsüi Goab Fluctus, 151, 316
Tsüi Goab Tholus, 117
Tupan Patera, 53, 55, 150, 315
Tvasthar, 39, 49, 146
Catena, 118, 120, 314
Mensa, 327
Paterae, 52
plume, 53, 164, 177
type I decay (large satellite orbit), 69
type II decay (large satellite orbit), 69

UBV system, 10
ubvy system, 10
Ukko Patera, 323
Ulgen
Montes, 329
Patera, 320
ultraviolet absorption, 19
ultraviolet spectrometer (UVS), 36–37
Uranus, 9
Urey, Harold, 9
Uta Patera, 310
UVS, see ultraviolet spectrometer

Van Allen radiation belts, 16
velocity of light, 6
Very Large Telescope (VLT), 295
VIMS, see Visible–Infrared Mapping Spectrometer
Viracocha Patera, 319
Visible–Infrared Mapping Spectrometer (VIMS), 15
Vivasvant Patera, 320
VLT, see Very Large Telescope
volcanism on Io, 23, 26, 99, 290

see also volcanoes; vulcanism on Earth; lava on Io; lava on Earth; plumes
chemical composition of volcanic products, 140–142
distribution, 153
effusive eruptions, 133–154
eruption styles, 142–149
explosion-dominated, 145–147
flow-dominated, 143–146
intra-Patera, 147–150
fumeroles, 195
Galileo observations of, 140–153
ground-based observations of, 136, 138, 196
hot spots, 1, 41–42, 45, 49, 97–98, 139
non-silicate flow emplacement styles, 149–153
relationship to mountains, 112, 117–118, 121
silicate, 24–26, 137, 151, 267
sulfur, 24–25, 137, 151, 196, 292
Voyager observations of, 136–140
volcanism on Earth, 133–136
see also vulcanism on Io; volcanoes; lava on Io; lava on Earth
Volund plume, 165, 317
Voyager spacecraft, 1, 14, 21–27
infrared radiometer, 23
infrared imaging spectrograph (IRIS), 98, 137, 195, 232
mass of, 18
vidicon-based imager, 137
volcanism observations, 136–140
Voyager 1, 1, 288
Voyager 2, 288

water, 219
Wayland, 45, 318
Yaw Patera, 315

Zal
Montes, 327
Patera, 113, 311
Zamama, 41–42, 317
flow field, 117
plume, 114, 117, 164, 170