Posts Tagged: Bruce Jakosky

MAVEN selfie marks four years in orbit at Mars

Today, NASA’s MAVEN spacecraft celebrates four years in orbit studying the upper atmosphere of the Red Planet and how it interacts with the Sun and the solar wind. To mark the occasion, the team has released a selfie image of the spacecraft at Mars.

MAVEN’s selfie was made by looking at ultraviolet wavelengths of sunlight reflected off of components of the spacecraft. The image was obtained with the Imaging Ultraviolet Spectrograph (IUVS) instrument, built at LASP, that normally looks at ultraviolet emissions from the Martian upper atmosphere. The IUVS instrument is mounted on a platform at the end of a 1.2-m boom (its own “selfie stick”), and by rotating around the boom can look back at the spacecraft. The selfie was made from 21 different images, obtained with the IUVS in different orientations, that have been stitched together.

LASP director receives AGU’s highest honor

The American Geophysical Union (AGU) has selected LASP Director Daniel Baker as its 2018 William Bowie Medal recipient. AGU’s highest honor, the William Bowie Medal, is given annually to one honoree in recognition of “outstanding contributions for fundamental geophysics and for unselfish cooperation in research.”

Baker is one of 33 individuals to be recognized this year for their dedication to science for the benefit of humanity and their achievements in Earth and space science. Baker will receive his award during the Honors Tribute at the 2018 AGU Fall Meeting, which will take place on Wednesday, December 12, 2018, in Washington, D.C.

Mars terraforming not possible using present-day technology

Science fiction writers have long featured terraforming, the process of creating an Earth-like or habitable environment on another planet, in their stories. Scientists themselves have proposed terraforming to enable the long-term colonization of Mars. A solution common to both groups is to release carbon dioxide gas trapped in the Martian surface to thicken the atmosphere and act as a blanket to warm the planet.

However, Mars does not retain enough carbon dioxide that could practically be put back into the atmosphere to warm Mars, according to a NASA-sponsored study led by LASP Associate Director for Science Bruce Jakosky. Transforming the inhospitable Martian environment into a place astronauts could explore without life support is not possible without technology well beyond today’s capabilities.

Stolen electrons key to unusual Mars aurora

Auroras appear on Earth as ghostly displays of colorful light in the night sky, usually near the poles. Our rocky neighbor Mars has auroras too, and NASA’s MAVEN spacecraft just found a new type of Martian aurora, according to a study led by LASP scientists. This phenomenon occurs over much of the day side of the Red Planet, where auroras are very hard to see.

Auroras flare up when energetic particles plunge into a planet’s atmosphere, bombarding gases and making them glow. While electrons generally cause this natural phenomenon, sometime protons can elicit the same response, although it’s more rare. Now, the MAVEN team has learned that protons were doing at Mars the same thing as electrons usually do at Earth—create aurora.

MAVEN mission sheds light on habitability of distant planets

How long might a rocky, Mars-like planet be habitable if it were orbiting a red dwarf star? It’s a complex question but one that NASA’s Mars Atmosphere and Volatile Evolution mission can help answer.

“The MAVEN mission tells us that Mars lost substantial amounts of its atmosphere over time, changing the planet’s habitability,” said David Brain, a MAVEN co-investigator at LASP. “We can use Mars, a planet that we know a lot about, as a laboratory for studying rocky planets outside our solar system, which we don’t know much about yet.”

At the fall meeting of the American Geophysical Union on Dec. 13, 2017, in New Orleans, Louisiana, Brain, also a professor in the CU Boulder astrophysical and planetary sciences department, described how insights from the LASP-led MAVEN mission could be applied to the habitability of rocky planets orbiting other stars.

Schneider honored for helping unravel mysteries of Mars

LASP research associate Nick Schneider has been awarded NASA’s Exceptional Scientific Achievement Medal for his contributions to the success of NASA’s orbiting MAVEN mission now at Mars.

Schneider, also a University of Colorado Boulder professor of astrophysical and planetary sciences, is the lead scientist on the LASP-built Imaging Ultraviolet Spectrograph (IUVS) riding on NASA’s MAVEN spacecraft that arrived at Mars in 2014. LASP Associate Director for Science, Bruce Jakosky, is the principal investigator for the MAVEN mission.

NASA’s Exceptional Scientific Achievement Medal is given for individual efforts that have resulted in key scientific discoveries or contributions of fundamental importance in the field. Schneider was presented with the medal in a ceremony Oct. 31 at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

1,000 Days in Orbit: MAVEN’s Top 10 Discoveries at Mars

NASA’s MAVEN mission to Mars led by LASP and the University of Colorado Boulder will hit a happy milestone on Saturday, June 17: 1,000 days of orbiting the Red Planet.

Since its launch in November 2013 and its orbit insertion in September 2014, the Mars Atmosphere and Volatile Evolution Mission (MAVEN) has been exploring the upper atmosphere of Mars, said LASP associate director and CU Boulder Professor Bruce Jakosky, principal investigator of the mission. MAVEN is bringing insight into how the sun stripped Mars of most of its atmosphere, turning a planet once possibly habitable to microbial life into a barren desert world.

High-altitude water acts as atmospheric escape route for Martian hydrogen

LASP researchers have discovered an atmospheric escape route for hydrogen on Mars, a mechanism that may have played a significant role in the planet’s loss of liquid water.

The findings describe a process in which water molecules rise to the middle layers of the planet’s atmosphere during warmer seasons of the year and then break apart, triggering a large increase in the rate of hydrogen escape from the atmosphere to space in a span of just weeks.

MAVEN spacecraft completes one Mars year of science observations

Today, the LASP-led MAVEN mission has completed one Mars year of science observations. One Mars year is just under two Earth years.

The Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft launched on Nov. 18, 2013, and went into orbit around Mars on Sept. 21, 2014. During its time at Mars, MAVEN has answered many questions about the Red Planet.

MAVEN Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere

Scientists involved in NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission, which is being led by the LASP team at the University of Colorado Boulder, have identified the process that appears to have played a key role in the transition of the Martian climate from an early, warm and wet environment that might have supported surface life to the cold, arid planet Mars is today.

MAVEN data have enabled researchers to determine the rate at which the Martian atmosphere currently is losing gas to space via stripping by the solar wind. The findings reveal that the erosion of Mars’ atmosphere increases significantly during solar storms. The scientific results from the mission appear in the Nov. 5 issues of the journals Science and Geophysical Research Letters.

MAVEN Results Find Mars Behaving Like a Rock Star

If planets had personalities, Mars would be a rock star according to recent preliminary results from NASA’s MAVEN spacecraft. Mars sports a “Mohawk” of escaping atmospheric particles at its poles, “wears” a layer of metal particles high in its atmosphere, and lights up with aurora after being smacked by solar storms. MAVEN is also mapping out the escaping atmospheric particles. The early results are being discussed at a MAVEN-sponsored “new media” workshop held in Berkeley, California, on June 19-21.

MAVEN spacecraft detects aurora and mysterious dust cloud around Mars

NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has observed two unexpected phenomena in the Martian atmosphere: an unexplained high-altitude dust cloud and aurora that reaches deep into the Martian atmosphere.

The presence of dust at orbital altitudes from about 93 miles (150 kilometers) to 190 miles (300 kilometers) above the surface was not predicted. Although the source and composition of the dust are unknown, there is no hazard to MAVEN and other spacecraft orbiting Mars.

Mars spacecraft, including MAVEN, reveal comet flyby effects on Martian atmosphere

Two NASA and one European spacecraft, including NASA’s MAVEN mission—led by LASP—have gathered new information about the basic properties of a wayward comet that buzzed by Mars Oct. 19, directly detecting its effects on the Martian atmosphere.

Data from observations carried out by MAVEN, NASA’s Mars Reconnaissance Orbiter (MRO) and the European Space Agency’s Mars Express spacecraft revealed that debris from the comet, known officially as Comet C/2013 A1 Siding Spring, caused an intense meteor shower and added a new layer of ions, or charged particles, to the ionosphere. The ionosphere is an electrically charged region in the atmosphere that reaches from about 75 miles (120 kilometers) to several hundred miles above the Martian surface.

Using the observations, scientists were able to make a direct connection between the input of debris from the meteor shower to the subsequent formation of the transient layer of ions—the first time such an event has been observed on any planet, including Earth, said the MAVEN research team.

MAVEN spacecraft’s first look at Mars holds surprises

NASA’s MAVEN spacecraft has provided scientists their first look at a storm of energetic solar particles at Mars and produced unprecedented ultraviolet images of the tenuous oxygen, hydrogen and carbon coronas surrounding the Red Planet, said LASP Associate Director for Science and University of Colorado Boulder Professor Bruce Jakosky, the mission’s principal investigator.

In addition, the new observations allowed scientists to make a comprehensive map of highly variable ozone in the Martian atmosphere underlying the coronas, he said. The spacecraft entered Mars’ orbit Sept. 21 and is in the process of lowering its orbit and testing its instruments. The $671 million Mars Atmosphere and Volatile EvolutioN mission, or MAVEN, was launched toward Mars on Nov. 18, 2013, to help solve the mystery of how the Red Planet lost most of its atmosphere.

NASA Shares What MAVEN Spacecraft Has Seen in its First Few Weeks at Mars

NASA will host a news teleconference at 2 p.m. EDT Tuesday, Oct. 14, to announce early science results from the LASP-led Mars Atmosphere and Volatile Evolution (MAVEN) mission.

Launched in November 2013, the spacecraft entered orbit around Mars on Sept. 21 completing an interplanetary journey of 10 months and 442 million miles (711 million kilometers). MAVEN is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere to help scientists understand climate change over the Red Planet’s history.

MAVEN returns first Mars observations

The LASP-led Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has obtained its first observations of the extended upper atmosphere surrounding Mars.

The Imaging Ultraviolet Spectrograph (IUVS) instrument obtained these false-color images eight hours after the successful completion of Mars orbit insertion by the spacecraft at 10:24 p.m. EDT Sunday, Sept. 21 after a 10-month journey.

LASP-led Mars mission set for orbit insertion on Sept. 21

A NASA mission to Mars led by LASP is set to slide into orbit around the red planet on Sept. 21 to investigate how its climate has changed over the eons, completing a 10-month interplanetary journey of 442 million miles.

The orbit-insertion maneuver will begin with six thruster engines firing to shed some of the velocity from the spacecraft, known as the Mars Atmosphere and Volatile EvolutioN, or MAVEN mission. The thruster engines will ignite and burn for 33 minutes to slow the spacecraft, allowing it to be captured into an elliptical orbit around Mars.

MAVEN on Track to Carry Out its Science Mission

The MAVEN spacecraft and all of its science instruments have completed their initial checkout, and all of them are working as expected. This means that MAVEN is on track to carry out its full science mission as originally planned.

The mission is designed to explore Mars’ upper atmosphere. It will determine the role that escape of gas from the atmosphere to space has played in changing the climate throughout the planet’s history. MAVEN was launched on November 18, 2013, and will go into orbit around Mars on the evening of Sept. 21, 2014 (10 p.m. EDT).

After a 5-week commissioning phase in orbit, during which it will get into its science-mapping orbit, deploy its booms, and do a final checkout of the science instruments, it will carry out a one-Earth-year mission. It will observe the structure and composition of the upper atmosphere, determine the rate of escape of gas to space today and the processes controlling it, and make measurements that will allow it to determine the total amount of gas lost to space over time.

MAVEN launched to study upper atmosphere of Mars

A LASP-led mission that will investigate how Mars lost its atmosphere and abundant liquid water launched into space on November 18 at 11:28 a.m. MST from Cape Canaveral Air Force Station in Florida.

The Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft separated from an Atlas V Centaur rocket’s second stage 53 minutes after launch. The solar arrays deployed approximately one hour after launch and currently power the spacecraft. MAVEN now is embarking on a 10-month interplanetary cruise before arriving at Mars next September.

Get involved: MAVEN blast-off to Mars!

MAVEN is set to launch aboard a United Launch Alliance Atlas V 401 rocket Nov. 18. The two-hour launch window extends from 1:28 to 3:28 p.m. EST. Liftoff will occur from Cape Canaveral Air Force Station’s Space Launch Complex 41.

Launch commentary coverage, as well as prelaunch media briefings, will be carried live on NASA Television and the agency’s website.

The following is a list of MAVEN launch-related briefings, events, and activities.

MAVEN haiku selected for travel to Mars

Haiku recognized in the LASP-led MAVEN message-to-Mars contest were announced today on the Going to Mars campaign website. Haiku authors from around the world—including Palestine, India, Australia, and Europe—entered the contest. The top five winners—all those whose haiku received 1,000 votes or more—include popular British blogger Benedict Smith and well-known American poet Vanna Bonta. Other entries receiving special recognition include MAVEN team selections in categories ranging from haiku specifically about MAVEN to humorous haiku.

MAVEN arrives in Florida for launch preparations

The LASP-led Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has arrived in Florida to begin final preparations for launch this November. The spacecraft was shipped from Lockheed Martin Space Systems in Littleton, Colo., to the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center on Friday.

Public voting opens on MAVEN haiku contest

The LASP-led MAVEN Going to Mars campaign has opened public voting on submissions to the message to Mars contest. Messages are in the form of three-line poems called haiku. The public will select the top three haiku via open voting on an online interface. Winning haiku will be announced on the MAVEN website on August… Read more »

MAVEN Student Art Contest Winner Announced

The winner of the LASP-run MAVEN student art contest turns out be the work of more than a single young person. The First Place entry, selected by online public vote, was the work of a Colorado-based Kindergarten Enrichment class.

LASP scientists elected as AGU fellows

In recognition of their accomplishments and exceptional scientific contributions, two LASP scientists have been elected as fellows of the American Geophysical Union (AGU). Bruce Jakosky and Cora Randall have been recognized by their peers for their outstanding work in Earth and space sciences with an honor that is bestowed upon not more than 0.1% of the AGU membership annually.

PRESS RELEASE: MAVEN Mission Primary Structure Complete

NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has achieved another significant milestone on its way towards launch in November 2013. Lockheed Martin has completed building the primary structure of the MAVEN spacecraft at its Space Systems Company facility near Denver.

PRESS RELEASE: LASP-led mission to Mars achieves major milestone

The CU/LASP-led mission to Mars, devoted to understanding the Martian upper atmosphere, reached a major milestone last week when it successfully completed its Mission Critical Design Review (CDR) at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. An independent review board, comprised of reviewers from NASA and several external organizations, met from July 11-15 to validate the system design of the Mars Atmosphere and Volatile Evolution, or MAVEN, mission.

NASA selects CU-Boulder to lead $485 million Mars mission

In the largest research contract ever awarded to the University of Colorado at Boulder, the Laboratory for Atmospheric and Space Physics has been selected by NASA to lead a $485 million orbiting space mission slated to launch in 2013 to probe the past climate of Mars, including its potential for harboring life over the ages…. Read more »