Posts Tagged: Kevin France

CHESS-4 will examine building blocks of stars and planets

NASA will launch a LASP-built astronomy experiment to study the chemistry involved in the formation of stars and planets in the Milky Way galaxy. The Colorado High-resolution Echelle Stellar Spectrograph, or CHESS 4, is scheduled for launch on April 13 from Kwajalein Atoll in the Marshall Islands on a NASA Black Brant IX sounding rocket.

The CHESS-4 mission will study the interstellar me­dium, the matter between stars. The mission focuses on translucent clouds of gas that provide the fundamental building blocks for stars and planets. These clouds have very low densities and the only way to study them is to measure how a cloud is affected by a star—and its associated outpouring of stellar material, the stellar wind—moving through it. CHESS will point at the star Gamma Ara, in the constellation Ara.

LASP-led team to study evaporating atmospheres of “hot Jupiters”

A team led by LASP scientists, engineers, and students has been selected to build a tiny orbiting satellite to study the evaporating atmospheres of gigantic “hot Jupiters”—distant gaseous planets orbiting scorchingly close to their parent stars.

To date more than 100 gas giants have been discovered orbiting very close to their parent stars, said LASP planetary scientist, Kevin France, principal investigator on the four-year, $3.3 million effort funded by NASA. France and his colleagues believe the new study of hot Jupiters—some of which are so close to parent stars they orbit them in a matter of days—will help planetary scientists better understand the evolution of our own solar system.

CHESS mission will check out the space between stars

Deep in space between distant stars, space is not empty. Instead, there drifts vast clouds of neutral atoms and molecules, as well as charged plasma particles called the interstellar medium—that may, over millions of years, evolve into new stars and even planets. These floating interstellar reservoirs are the focus of the NASA-funded CHESS sounding rocket mission, which will check out the earliest stages of star formation.

CHESS—short for the Colorado High-resolution Echelle Stellar Spectrograph—is a sounding rocket payload that will fly on a Black Brant IX suborbital sounding rocket late in the night on June 26, 2017. CHESS measures light filtering through the interstellar medium to study the atoms and molecules within, which provides crucial information for understanding the lifecycle of stars.

LASP-built instrument to study the birthplace of stars and planets

To the casual onlooker, the space between the stars is benign and inactive. However, this space, also called the interstellar medium, is very active and contains the raw materials for future solar systems.

On February 21, 2016, the Colorado High-resolution Echelle Stellar Spectrograph (CHESS) will fly on a NASA suborbital sounding rocket on its second flight in two years to study the atoms and molecules in the interstellar medium.