Posts Tagged: NASA Wallops

CHESS-4 will examine building blocks of stars and planets

NASA will launch a LASP-built astronomy experiment to study the chemistry involved in the formation of stars and planets in the Milky Way galaxy. The Colorado High-resolution Echelle Stellar Spectrograph, or CHESS 4, is scheduled for launch on April 13 from Kwajalein Atoll in the Marshall Islands on a NASA Black Brant IX sounding rocket.

The CHESS-4 mission will study the interstellar me­dium, the matter between stars. The mission focuses on translucent clouds of gas that provide the fundamental building blocks for stars and planets. These clouds have very low densities and the only way to study them is to measure how a cloud is affected by a star—and its associated outpouring of stellar material, the stellar wind—moving through it. CHESS will point at the star Gamma Ara, in the constellation Ara.

CHESS mission will check out the space between stars

Deep in space between distant stars, space is not empty. Instead, there drifts vast clouds of neutral atoms and molecules, as well as charged plasma particles called the interstellar medium—that may, over millions of years, evolve into new stars and even planets. These floating interstellar reservoirs are the focus of the NASA-funded CHESS sounding rocket mission, which will check out the earliest stages of star formation.

CHESS—short for the Colorado High-resolution Echelle Stellar Spectrograph—is a sounding rocket payload that will fly on a Black Brant IX suborbital sounding rocket late in the night on June 26, 2017. CHESS measures light filtering through the interstellar medium to study the atoms and molecules within, which provides crucial information for understanding the lifecycle of stars.

New Earth-Observing Instrument Makes Successful Balloon Flight

In New Mexico on the morning of Aug. 18, a high-altitude balloon successfully carried the HyperSpectral Imager for Climate Science (HySICS) instrument to an altitude of 123,000 feet, above most of the Earth’s atmosphere, to reach space-like conditions and demonstrate new technologies for acquiring high-accuracy science measurements of the Earth.

Scientists use outgoing shortwave radiance, or the amount of sunlight scattered from Earth’s surface and atmosphere and reflected back toward space, as one of the key metrics for studying our planet’s dynamic climate. Watching these radiances over time helps researchers monitor and better understand the causes of environmental changes and global warming.