Posts Tagged: NASA’s Goddard Space Flight Center

NASA’s GOLD instrument captures its first image of the Earth

NASA’s Global-scale Observations of the Limb and Disk, or GOLD, instrument powered on and opened its cover to scan the Earth for the first time, resulting in a “first light” image of the Western Hemisphere in the ultraviolet. GOLD will provide unprecedented global-scale imaging of the temperature and composition at the dynamic boundary between Earth’s atmosphere and space.

The instrument was launched from Kourou, French Guiana, on Jan. 25, 2018, onboard the SES-14 satellite and reached geostationary orbit in June 2018. After checkout of the satellite and communications payload, GOLD commissioning—the period during which the instrument performance is assessed—began on Sept. 4.

Team scientists conducted one day of observations on Sept. 11, during instrument checkout, enabling them to produce GOLD’s “first light” image. Commissioning will run through early October, as the team continues to prepare the instrument for its planned two-year science mission.

GOLD one step closer to launching into space

A NASA instrument that will study the upper atmosphere and the impact of space weather on Earth is a step closer on its journey into space.

The Global-scale Observations of the Limb and Disk (GOLD) mission, led by University of Central Florida (UCF) scientist Richard Eastes, is scheduled to launch in late 2017 from Florida. Earlier this month, the LASP-built instrument was shipped to Airbus Defence and Space in Toulouse, France, for integration on the SES-14 communications satellite, on which it will be launched into space.

CU-Boulder students to help control instruments on MMS from LASP

LASP will serve as the Science Operations Center for a NASA mission launching this month to better understand the physical processes of geomagnetic storms, solar flares and other energetic phenomena throughout the universe.

The $1.1 billion Magnetospheric Multiscale (MMS) mission will be comprised of four identical, octagonal spacecraft flying in a pyramid formation, each carrying 25 instruments. The goal is to study in detail magnetic reconnection, the primary process by which energy is transferred from the solar wind to Earth’s protective magnetic space environment known as the magnetosphere, said LASP Director Daniel Baker, Science Operations Center (SOC) lead scientist for MMS.