Posts Tagged: NOAA

LASP sounding rocket takes a second look at the Sun

LASP Associate Director Tom Woods knows about space gunk.

As the principal investigator for the Extreme Ultraviolet Variability Experiment (EVE) aboard NASA’s Solar Dynamics Observatory, he’s all too familiar with the ways that exposure to the harsh space environment can lead to a spacecraft instrument’s degradation.

GOES-17 shares first data from EXIS instrument

NOAA’s GOES-17 satellite has transmitted its first data from the LASP-built Extreme ultraviolet and X-ray Irradiance Sensors (EXIS) space weather monitoring instrument.

EXIS continually monitors the brightness of the Sun. Every 30 seconds, EXIS will create a picture of the Sun’s output in the part of the spectrum which includes X-ray and ultraviolet light—wavelengths that are absorbed by the outermost layers of our Earth’s atmosphere and ionosphere.

NOAA satellite launches with LASP space weather instrument onboard

A LASP instrument package designed to help scientists better understand potentially damaging space weather launched successfully aboard a National Oceanic and Atmospheric Administration (NOAA) satellite on Thursday, March 1, 2018.

Built at LASP, the instrument suite known as the Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS) is the second of four identical packages that will fly on NOAA’s next-generation Geostationary Operational Environmental Satellites-R Series (GOES-R). As part of the NOAA weather forecasting satellite series, EXIS measures energy output from the Sun that can affect satellite operations, telecommunications, GPS navigation, and power grids on Earth.

GOLD team successfully completes environmental testing

NASA’s Global-scale Observations of the Limb and Disk, or GOLD, instrument has successfully completed environmental testing at Airbus in Toulouse, France, in preparation for its groundbreaking mission to observe the nearest reaches of space. Scheduled for launch in late January 2018, GOLD will measure densities and temperatures in Earth’s thermosphere and ionosphere.

GOLD is a NASA Mission of Opportunity that will fly an ultraviolet imaging spectrograph on the SES-14 geostationary commercial communications satellite, built by Airbus for SES. The two-channel imaging spectrograph—designed and built at LASP—will explore the boundary between Earth and space, a dynamic area of near-Earth space that responds both to space weather from above and to weather in the atmosphere from below.

GOLD installed on commercial communications satellite

A LASP-built instrument that will provide unprecedented imaging of the Earth’s upper atmosphere has been successfully installed on the commercial satellite that will carry it into geostationary orbit some 22,000 miles above the Earth.

The Global-scale Observations of the Limb and Disk (GOLD) mission, led by the University of Central Florida (UCF) and built and operated by LASP, features a collaboration with satellite owner-operator SES Government Solutions (SES GS) to place an ultraviolet instrument as a hosted payload on a commercial satellite.

GOES-16 EXIS observes solar flares

On January 21, 2017, the LASP-built Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS) on the National Oceanic and Atmospheric Administration (NOAA) GOES-16 satellite observed solar flares.

Solar flares are huge eruptions of energy on the sun and often produce clouds of plasma traveling more than a million miles an hour. When these clouds reach Earth they can cause radio communications blackouts, disruptions to electric power grids, errors in GPS navigation, and hazards to satellites and astronauts.

GOLD one step closer to launching into space

A NASA instrument that will study the upper atmosphere and the impact of space weather on Earth is a step closer on its journey into space.

The Global-scale Observations of the Limb and Disk (GOLD) mission, led by University of Central Florida (UCF) scientist Richard Eastes, is scheduled to launch in late 2017 from Florida. Earlier this month, the LASP-built instrument was shipped to Airbus Defence and Space in Toulouse, France, for integration on the SES-14 communications satellite, on which it will be launched into space.

Ready for launch: Instrument suite to assess space weather

A multimillion dollar CU-Boulder/LASP instrument package expected to help scientists better understand potentially damaging space weather is now slated to launch aboard a National Oceanic and Atmospheric Administration satellite on Saturday, Nov. 19.

Designed and built at LASP, the instrument suite known as the Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS) is the first of four identical packages that will fly on four NOAA weather satellites in the coming decade. EXIS will measure energy output from the sun that can affect satellite operations, telecommunications, GPS navigation and power grids on Earth as part of NOAA’s next-generation Geostationary Operational Environmental Satellites-R Series (GOES-R).

PRESS RELEASE: GOLD Approved for Final Design and Fabrication

The Global-scale Observations of the Limb and Disk (GOLD) mission, part of the NASA Explorers Program, passed a rigorous examination on March 5th at the Goddard Space Flight Center in Maryland, enabling the mission to move into the final design and fabrication phase.

LASP-built space weather instrument ready for delivery

A multimillion dollar LASP instrument package to study space weather has passed its pre-installation testing and is ready to be incorporated onto a National Oceanic and Atmospheric Administration satellite for a 2015 launch.

PRESS RELEASE: LASP will partner on NASA mission to study Earth’s upper atmosphere

NASA has announced that LASP will collaborate on a $55 million project to build and launch an instrument to provide unprecedented imaging of the Earth’s upper atmosphere from a geostationary orbit.

The kind of information the Global-scale Observations of the Limb and Disk (GOLD) mission will collect will have a direct impact on man’s understanding of space weather and its impact on communication and navigation satellites.