Calculating Hemispheric Power and Joule Heating using Defense Meteorological Satellite Program (DMSP) F-13 data

REU Student: Mina Khan

Research mentors: Dr. Barbara Emery & Dr. Astrid Maute
I. Introduction
 • Preliminary knowledge
 • Definition of Joule heating
 • Importance of Joule heating

II. Research Strategy
 • Motivation
 • Framework for calculation & analysis
 • Goals

III. Programming methodology & results
 • Single day analysis
 • Multiple day results

IV. Key Findings
 • Dawn Vs. Dusk comparison
 • Equatorward Vs. Poleward comparison
 • Hemispheric Power Vs. Joule Heating

V. Conclusions
I. Introduction
 • Preliminary knowledge
 • Definition of Joule heating
 • Importance of Joule heating

II. Research Strategy
 • Motivation
 • Framework for calculation & analysis
 • Goals

III. Programming methodology & results
 • Single day analysis
 • Multiple day results

IV. Key Findings
 • Dawn Vs. Dusk comparison
 • Equatorward Vs. Poleward comparison
 • Hemispheric Power Vs. Joule Heating

V. Conclusions
I. Introduction

Preliminary knowledge

• **Interplanetary Magnetic Field (IMF)** is the Sun’s magnetic field carried by solar wind in interplanetary space.

• IMF is a 3D vector: \([B_x, B_y, B_z]\).
 - \(B_x\) & \(B_y\) are parallel to the ecliptic,
 - whereas \(B_z\) is perpendicular.

• When \(B_z\) is negative, IMF points south and is anti-parallel to the geomagnetic field. This creates a door for energetic particles to enter Earth’s inner magnetosphere.
I. Introduction

Preliminary knowledge

• The **DMSP F13 satellite** was launched in March 1995 into a Sun synchronous, polar orbit in the 6-18 local time frame.

• We use DMSP data from two of its instruments: (1) Special Sensor Precipitating Electron and Ion Spectrometer (SSJ/4) (2) Ion Drift Meter (IDM).
I. Introduction

Preliminary knowledge

- **Ion drift velocity** \((V_i) \) = \(\frac{(E \times B)}{B^2} \) where \(E \) is Electric Field and \(B \) is Earth’s magnetic field.
- \(V_y \) is the horizontal cross-track ion velocity.
- **Convection Reversal Boundary (CRB)** is where \(V_y \) reverses direction.

![Diagram showing Earth's magnetic field, ion drift velocity, and convection reversal boundary.](image)
• **Weimer 2005** is an empirical model of the high-latitude ion drift velocity. We compare Weimer 2005 Vy with IDM Vy observations.

• **TIEGCM (Thermosphere Ionosphere Electrodynamics General Circulation Model)** is a numeric simulation model for Earth’s upper atmosphere. TIEGCM uses Weimer 2005 model.

• **Hemispheric power (HP)** is the spatially integrated energy flux of precipitating electrons.
I. Introduction

Definition of Joule heating

- **Joule heating** (QJ) is the heat loss due to passage of electric current through a conductor.
- In the ionosphere, it occurs due to the friction of ions moving through neutral atoms.
I. Introduction

Importance of Joule Heating

1. Joule heating is usually the largest heat source in high-latitude regions. During geomagnetic storms, Joule heating can also exceed the global solar heating from UV and EUV radiation [Knipp et al., Solar Physics, 2004].

2. Joule heating is the largest source of uncertainty in the energetics of the thermosphere.
I. Introduction
 • Preliminary knowledge
 • Definition of Joule heating
 • Importance of Joule heating

II. Research Strategy
 • Motivation
 • Framework for calculation & analysis
 • Goals

III. Programming methodology & results
 • Single day analysis
 • Multiple day results

IV. Key Findings
 • Dawn Vs. Dusk comparison
 • Equatorward Vs. Poleward comparison
 • Hemispheric Power Vs. Joule Heating

V. Conclusions
II. Research Strategy

Motivation

- Figure 8 from Heelis et al. [JGR, 1980] is an estimate of the relative locations of the aurora and the ion drift.

- We aim is to improve the parameterization of the aurora in the TIEGCM so that the resulting Joule heating is approximately correct.
II. Research Strategy

Framework for calculation & analysis

• **Total Joule heating**
 \[\approx Pedersen\ Conductance \times Electric\ Field^2 \]

• **Particle Joule heating**
 \[\approx Auroral\ Pedersen\ Conductance \times Electric\ Field^2 \]

• **Total Joule heating**
 \[= \sqrt{Particle\ Joule\ heating^2 + EUV\ and\ UV\ Joule\ heating^2} \]
II. Research Strategy

Framework for calculation & analysis

- Need to analyze the components of Joule heating.

- Joule Heating
 - Pedersen Conductance
 - Electric Field2
 - Auroral Pedersen Conductance
 - EUV and UV Pedersen Conductance
 - Electron Energy measured by SSJ4
 - Electron Energy Flux measured by SSJ4
 - Vy (we can safely ignore Vx because DMSP F-13 is in a dawn dusk orbit) measured by IDM

2013 REU student: Mina Khan
II. Research Strategy

Goals

1. Analyze the local time variation in Joule heating, i.e. compare Joule heating during dawn, dusk, midnight and noon.

2. Study the spatial distribution of Joule heating. In particular, compare Joule heating in the polar cap (anti-sunward ion flow) with equatorward Joule heating (sunward ion flow).

3. Analyze the relative location of electron energy flux with respect toVy.

4. Quantitatively compare hemispheric power, particle Joule heating, and total Joule heating for different IMF values.
I. Introduction
- Preliminary knowledge
- Definition of Joule heating
- Importance of Joule heating

II. Research Strategy
- Motivation
- Framework for calculation & analysis
- Goals

III. Programming methodology & results
- Single day analysis (Ap=84, very stormy)
- Multiple day results

IV. Key Findings
- Dawn Vs. Dusk comparison
- Equatorward Vs. Poleward comparison
- Hemispheric Power Vs. Joule Heating

V. Conclusions
III. Programming methodology & results

Single day analysis: One Orbit

Energy Flux

Conductance

V_y

Dawn side

Joule heating

Dusk side

UT (hour)
III. Programming methodology & results

Single day analysis: One Orbit

- Energy Flux
- Conductance
- Vy
- Joule heating
- Dawn side
- Dusk side
III. Programming methodology & results

Single day analysis: Format for All Orbits

05 01 18 DMSP-F13 smoothed Total Joule Heating (mW/m²)

2005 01 18 DMSP-F13

Half Integral Energy Flux Vy Peak CRB

2013 REU student: Mina Khan
III. Programming methodology & results

Single day analysis: All Orbits
Particle Joule heating and Hemispheric Power are calculated for the region between the Poleward and Equatorward boundary.
Region inside CRB circle has *poleward Joule heating* due to anti-sunward ion flow, whereas the region between Vy zero Equatorward Boundary and CRB has *equatorward Joule heating* due to sunward ion flow.
III. Programming methodology & results

Multiple day results: Jan-June 2005
III. Programming methodology & results

Multiple day results: Jan-June 2005

Area for particle Joule heating is bigger on the dawn side compared to the dusk side.

Area for Total Joule heating is bigger on the dusk side compared to the dawn side.
III. Programming methodology & results

Multiple day results: Jan-June 2005

Difference between radii of CRB and Vy Zero Equatorward Boundary increases as Bz decreases. This means area for equatorward Joule heating increases as Bz becomes more negative. Also, as Bz becomes more negative, CRB radius increases and so does the area for poleward Joule heating.
III. Programming methodology & results

Multiple day results: Jan-June 2005

Difference between the radii of **Equatorward** and **Poleward** Boundaries increases with the absolute value of Bz.
I. Introduction
 • Preliminary knowledge
 • Definition of Joule heating
 • Importance of Joule heating

II. Research Strategy
 • Motivation
 • Framework for calculation & analysis
 • Goals

III. Programming methodology & results
 • Single day analysis
 • Multiple day results

IV. Key Findings
 • Dawn Vs. Dusk comparison
 • Equatorward Vs. Poleward comparison
 • Hemispheric Power Vs. Joule Heating

V. Conclusions

Aha, finally 😊
IV. Key Findings: Dawn Vs. Dusk
Electron Energy Flux and Hemispheric Power

Area for Hemispheric Power is mostly bigger on the dawn side compared to the dusk side.
IV. Key Findings: Dawn Vs. Dusk

Hemispheric power

HP is highest on the dawn side, and HP for the dusk side is relatively small.
IV. Key Findings: Dawn Vs. Dusk

Average Particle & Total Joule heating

Average particle Joule heating on dawn side is almost equal to average particle Joule heating on dusk side.

Average Joule heating for dawn side is greater than that for dusk side when \(B_z > 0 \), and vice versa for \(B_z < 0 \).
IV. Key Findings: Dawn Vs. Dusk

Area for Particle & Total Joule heating

Particle Joule Heat: Bz = -1.5, QJP = 15.1 GW

Total Joule Heat: Bz = -1.5, QJ = 40.2 GW
IV. Key Findings: Dawn Vs. Dusk

Area Integrated Particle & Total Joule heating

Integrated particle Joule heating is higher on the dawn side than on the dusk.

Integrated QJ on the dawn side is almost equal to QJ on the dusk side.

2013 REU student: Mina Khan
IV. Key Findings: Equatorward Vs. Poleward

Average Particle & Total Joule heating

Average equatorward particle Joule heating for sunward Vy is greater than average poleward particle Joule heating.

Average Joule heating in the polar cap for anti-sunward Vy is greater than the average equatorward Joule heating.

2013 REU student: Mina Khan
IV. Key Findings: Equatorward Vs. Poleward Area Integrated Particle & Total Joule heating

- Integrated QJ in the polar cap is more than integrated equatorward QJ for sunward Vy.
- Integrated equatorward QJP for sunward Vy is more than integrated poleward QJP.
- On the equatorward side, QJP is mostly equal to QJ, indicating the importance of the auroral Pedersen conductance.
IV. Key Findings: Hemispheric Power Vs. Joule Heating

Integrated Joule heating Vs. Hemispheric Power

- Integrated total Joule heating is much higher than Hemispheric Power.
- Integrated Particle Joule heating has almost the same magnitude as Hemispheric Power.
I. Introduction
 - Preliminary knowledge
 - Definition of Joule heating
 - Importance of Joule heating

II. Research Strategy
 - Motivation
 - Framework for calculation & analysis
 - Goals

III. Programming methodology & results
 - Single day analysis
 - Multiple day results

IV. Key Findings
 - Dawn Vs. Dusk comparison
 - Equatorward Vs. Poleward comparison
 - Hemispheric Power Vs. Joule Heating

V. Conclusions
Conclusions

<table>
<thead>
<tr>
<th>PARTICLE JOULE HEATING (QJP)</th>
<th>TOTAL JOULE HEATING (QJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average QJP:</td>
<td>Average QJ:</td>
</tr>
<tr>
<td>Mostly, Dawn side ≈ Dusk side.</td>
<td>when Bz>0, Dawn side>Dusk side</td>
</tr>
<tr>
<td>Integrated QJP:</td>
<td>when Bz<0, Dawn side<Dusk side</td>
</tr>
<tr>
<td>Dawn side>Dusk side since dawn</td>
<td>Integrated QJ:</td>
</tr>
<tr>
<td>area is larger than dusk area</td>
<td>Dawn side ≈ Dusk side although dusk</td>
</tr>
<tr>
<td></td>
<td>area is mostly greater than dawn area</td>
</tr>
<tr>
<td>Average QJP:</td>
<td>Average QJ:</td>
</tr>
<tr>
<td>Equatorward>Poleward.</td>
<td>Poleward (anti-sunward Vy)>Equatorward</td>
</tr>
<tr>
<td>Integrated QJP:</td>
<td>(sunward Vy)</td>
</tr>
<tr>
<td>Equatorward>Poleward.</td>
<td>Integrated QJ: QJ>>HP</td>
</tr>
<tr>
<td>QJP≈HP</td>
<td>Poleward>Equatorward.</td>
</tr>
<tr>
<td>Area for QJP and HP increases as</td>
<td>On the equatorward side, QJP≈ QJ.</td>
</tr>
<tr>
<td>the absolute value of Bz increases.</td>
<td>Area for QJ , especially equatorward QJ ,</td>
</tr>
<tr>
<td>Area for QJP and HP increases as</td>
<td>increases as Bz becomes more negative</td>
</tr>
</tbody>
</table>
Acknowledgements

- Thank you to Dr. Barbara Emery for her time, support & guidance.
- Thank you to Dr. Astrid Maute for her help and encouragement.
- Thank you to LASP and HAO for giving me this amazing research opportunity.
- Thank you to Marty, Erin and all REU students. It was wonderful meeting you all!
Thank you for your attention!

Questions?