Comparing Observations of the Abundance of Sodium in Mercury’s Exosphere

Presenter: Alexander Lanzano
Mentors: Aimee Merkel, Timothy Cassidy, Bill McClintock
Motivation

- Mercury is highly vulnerable to the Sun
 - Its exosphere is most likely dependent on the amount of radiation the planet receives
- MESSENGER is one of the first satellites to obtain data about the exosphere from orbit
- We can compare this new data to ground based data to see if there are any corresponding trends
- Discovering how the exosphere is influenced by the Sun can give us an insight into:
 - The chemical composition of Mercury
 - How the planet might have formed
 - How our Solar System might have formed
 - What other planets might be like in other systems at similar distances as Mercury is from the Sun
OUTLINE

- Background on Mercury and the solar influence on its exosphere
- Variables of interest
- Observations from Earth
- Observations from MESSENGER
- Comparison of the two data sets
- Observed trends
Mercury

- General Facts
 - Smallest planet, 6% Earth
 - 1 year = 88 Earth days
 - 1 day = 176 Earth days
 - Highly eccentric orbit
 - Magnetic field present
 - Virtually no atmosphere

- Highly influenced by the Sun
 - High energy particle collisions
 - Radiation pressure
MERURY’S ATMOSPHERE

- No sustainable atmosphere
- Thin Exosphere
 - H, He, O, Ca, Mg, K Na
 - Resembles comet tail
- Source of Exosphere
 - Sputtering
 - PSD
 - Thermal Evaporation
 - Impact evaporation
Determine Solar Influence by Variation in Observed Na

- Search for increase in Na density:
 - D1 and D2 (yellow) spectrum 580 nm
- How does it change with respect to:
 - Time of Day
 - Change of season
GROUND BASED OBSERVATION METHOD

Observation Slit
SPRAGUE ET AL. OBSERVATIONS

Sprague et al. 1997

- Sprague et al.’s conclusions:
 - Na column density varies with local time
 - Did not account for True Anomaly
<table>
<thead>
<tr>
<th>UT Date</th>
<th>Frame #</th>
<th>UT Time</th>
<th>Alt Mass</th>
<th>Slit Offset</th>
<th>Phase Angle</th>
<th>Heliocentric Distance (au)</th>
<th>Heliocentric Distance (km)</th>
<th>Slit Rot. (°)</th>
<th>Epoch</th>
<th>Dec (°)</th>
<th>g02</th>
<th>g01</th>
<th>Total Rad. Accel. (au/s²)</th>
<th>Total Rad. Accel. (km/s²)</th>
<th>Sub-Earth Long. Time</th>
<th>Sub-Earth Lat.</th>
<th>Sub-Solar Long. Time</th>
<th>Solar Activity</th>
<th>Helioc. Mag.</th>
<th>Flux at Mercury</th>
<th>Calibration Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/24/95</td>
<td>785-095</td>
<td>2</td>
<td>32</td>
<td>6.0</td>
<td>45</td>
<td>118.9</td>
<td>9.53</td>
<td>0.466</td>
<td>-24</td>
<td>2.7</td>
<td>1.4</td>
<td>12</td>
<td>0.098</td>
<td>0.009</td>
<td>0.278</td>
<td>7.7</td>
<td>278</td>
<td>7.8</td>
<td>0.023</td>
<td>2.4</td>
<td>757</td>
</tr>
<tr>
<td>07/25/95</td>
<td>785-096</td>
<td>2</td>
<td>37</td>
<td>4.8</td>
<td>45</td>
<td>118.9</td>
<td>9.54</td>
<td>0.466</td>
<td>-24</td>
<td>2.7</td>
<td>1.4</td>
<td>12</td>
<td>0.098</td>
<td>0.009</td>
<td>0.278</td>
<td>7.7</td>
<td>278</td>
<td>7.8</td>
<td>0.037</td>
<td>2.4</td>
<td>375</td>
</tr>
<tr>
<td>07/26/95</td>
<td>785-097</td>
<td>2</td>
<td>42</td>
<td>6.0</td>
<td>45</td>
<td>118.9</td>
<td>9.54</td>
<td>0.466</td>
<td>-24</td>
<td>2.7</td>
<td>1.4</td>
<td>12</td>
<td>0.098</td>
<td>0.009</td>
<td>0.278</td>
<td>7.7</td>
<td>278</td>
<td>7.8</td>
<td>0.093</td>
<td>2.4</td>
<td>422</td>
</tr>
<tr>
<td>08/06/95</td>
<td>815-143</td>
<td>12</td>
<td>5</td>
<td>6.0</td>
<td>50</td>
<td>-107</td>
<td>7.77</td>
<td>0.127</td>
<td>-150</td>
<td>37.4</td>
<td>20.5</td>
<td>171</td>
<td>0.098</td>
<td>0.009</td>
<td>0.278</td>
<td>7.9</td>
<td>360</td>
<td>1.7</td>
<td>0.049</td>
<td>4.9</td>
<td>1042</td>
</tr>
<tr>
<td>08/14/95</td>
<td>815-144</td>
<td>12</td>
<td>22</td>
<td>6.0</td>
<td>50</td>
<td>-107</td>
<td>7.77</td>
<td>0.127</td>
<td>-150</td>
<td>37.4</td>
<td>20.5</td>
<td>171</td>
<td>0.098</td>
<td>0.009</td>
<td>0.278</td>
<td>7.9</td>
<td>360</td>
<td>1.9</td>
<td>0.046</td>
<td>4.9</td>
<td>123</td>
</tr>
<tr>
<td>08/14/95</td>
<td>815-145</td>
<td>12</td>
<td>30</td>
<td>5.0</td>
<td>50</td>
<td>-107</td>
<td>7.77</td>
<td>0.127</td>
<td>-150</td>
<td>37.4</td>
<td>20.5</td>
<td>171</td>
<td>0.098</td>
<td>0.009</td>
<td>0.278</td>
<td>7.9</td>
<td>360</td>
<td>1.7</td>
<td>0.043</td>
<td>4.9</td>
<td>1214</td>
</tr>
<tr>
<td>08/14/95</td>
<td>815-147</td>
<td>12</td>
<td>35</td>
<td>4.6</td>
<td>50</td>
<td>-107</td>
<td>7.77</td>
<td>0.127</td>
<td>-150</td>
<td>37.4</td>
<td>20.5</td>
<td>171</td>
<td>0.098</td>
<td>0.009</td>
<td>0.278</td>
<td>7.9</td>
<td>360</td>
<td>2.0</td>
<td>0.033</td>
<td>4.9</td>
<td>2858</td>
</tr>
<tr>
<td>08/14/95</td>
<td>815-148</td>
<td>12</td>
<td>48</td>
<td>3.8</td>
<td>50</td>
<td>-107</td>
<td>7.77</td>
<td>0.127</td>
<td>-150</td>
<td>37.4</td>
<td>20.5</td>
<td>171</td>
<td>0.098</td>
<td>0.009</td>
<td>0.278</td>
<td>7.9</td>
<td>360</td>
<td>1.9</td>
<td>0.014</td>
<td>4.9</td>
<td>2858</td>
</tr>
<tr>
<td>08/27/95</td>
<td>815-226</td>
<td>12</td>
<td>50</td>
<td>3.7</td>
<td>50</td>
<td>-101</td>
<td>7.54</td>
<td>0.123</td>
<td>-136</td>
<td>34.4</td>
<td>15.5</td>
<td>156</td>
<td>0.098</td>
<td>0.009</td>
<td>0.277</td>
<td>0.0</td>
<td>279</td>
<td>16</td>
<td>0.053</td>
<td>5.0</td>
<td>111</td>
</tr>
</tbody>
</table>

Sprague et al. 1997

Physical and Geometric Parameters for Mercury Observations

UT Date

Frame #

UT Time

Alt Mass

Slit Offset

Phase Angle

Heliocentric Distance (au)

Heliocentric Distance (km)

Slit Rot. (°)

Epoch

Dec (°)

g02

g01

Total Rad. Accel. (au/s²)

Total Rad. Accel. (km/s²)

Sub-Earth Long. Time

Sub-Earth Lat.

Sub-Solar Long. Time

Solar Activity

Helioc. Mag.

Flux at Mercury

Calibration Factor

Note: The table above represents physical and geometric parameters for Mercury observations as documented in Sprague et al. 1997. The parameters include UT Date, Frame #, UT Time, Alt Mass, Slit Offset, Phase Angle, Heliocentric Distance (au), Heliocentric Distance (km), Slit Rot. (°), Epoch, Dec (°), g02, g01, Total Rad. Accel. (au/s²), Total Rad. Accel. (km/s²), Sub-Earth Long. Time, Sub-Earth Lat., Sub-Solar Long. Time, Solar Activity, Helioc. Mag., Flux at Mercury, and Calibration Factor.
Determine Local Time

\[
Local \ Time = \text{Mod} \left\{ \left[\text{Subsolar Point} - \left(\text{SubEarth Point} + \arcsin \left(\frac{-x}{\sqrt{1 - y^2}} \right) \right) \right] \times \frac{24}{360} + 12.24 \right\}
\]
Column Density (cm$^{-2}$)

Na Density vs Local Time

Local Time (hrs)
NEW PARAMETERS OF INTEREST

- True Anomaly
 - Used to determine seasonal variability of Na density
Na Column Density vs TA

Column Density (cm$^{-2}$)

True Anomaly (deg)
The MESSENGER Mission

- Takes vertical profile scans of Mercury’s exosphere
- Uses UVVS
- Records Na Column density for:
 - Local time
 - Seasonal variability
- 8 Mercury years of data (2 Earth years)
COMPETING FACTORS

- **Sunlight Exposure vs Radiation Pressure**
 - Greater photon intensity closer to the sunlight means more Na vaporization, but…
 - Being closer to the sun means more radiation pressure that disperses the exosphere

![Diagram showing the relationship between sunlight exposure and radiation pressure with True Anomaly values of 0° and 180°, indicating low and high intensity and pressure states.](image-url)
CONCLUSIONS

- Increases in Na density depends on:
 - True Anomaly
 - Local time
- Both ground based and MESSENGER data are same order of magnitude
- Overall: Data show similar trends!
Future Work

- Conduct an analysis of outliers in Sprague data
 - Attempt to account for difference in D1 and D2 spectra
- Compare to other ground based data that used different observation techniques
 - Potter et al.
REFERENCES AND IMAGES

- Image slide 1: http://nssdc.gsfc.nasa.gov/image/spacecraft/messenger.jpg
- Images slide 4:
 - http://www.8planets.co.uk/wp-content/themes/8planets/images/moon_surface_apollo_11_lg.jpg
 - http://undsci.berkeley.edu/images/us101/mercury.gif
- Image slide 5:
- Image slide 5:
 - http://upload.wikimedia.org/wikipedia/commons/2/2f/Fraunhofer_lines.svg
REFERENCES AND IMAGES CONT.

- Image slide 14: Cassidy, Timothy. PowerPoint presentation