Mesospheric Temperature Observation Using a Michelson Interferometer

Hannah LeTourneau (Whitworth University)
Mentor: Dr. Qian Wu (HAO)
Overview

- Project Details
- Background Information
- Data Collection Method
- Data Analysis Software
- Results
- Future Study
Project Overview

- Michelson interferometer set up
- Software written
- Data collected
- Aboard ship from CA to Antarctica in November
- Design work
The Mesosphere/Lower Thermosphere (MLT)

- 80-105 km above Earth
- Very dynamic
- Tides
- Airglow Spectral Analysis
Hydroxyl (OH)

- Thermal equilibrium
- Displacement Reaction
 \[\text{H+O}_3 \rightarrow \text{OH}^* + \text{O}_2 + 3.3 \text{ eV} \]
- Meinel Bands
- Temperature Correlation

![Graph showing altitude vs. volume emission rate]
Data Collection

- Nicolette 6700 Spectrometer
- InGaAs Detector
- Scope
- Macro
- Terdiurnal Tide
The Interferometer

Detector Scope Scanning Mirror

Beam Splitter HeNe Laser
Temperature Determination

• Relationship of photon emission intensity to upper state angular momentum for Boltzmann distribution of multiplet rotational levels
• Relative intensity at expected peaks (I)
• \(\ln\left(\frac{I}{2A(2J'+1)}\right) \)
 – J’: Total Upper Angular Momentum (1.5, 2.5, 3.5)
 – A(J’): Einstein Constants (16.74, 20.37, 21.82 s^-1)
• Plotted vs. F(J’)
 – F(J’): Rotational Term Values (12,014.1, 12,089.0, 12194.5 cm^-1)
 – Linear least squares fitted
• \(T=-100\frac{h}{k}\frac{c}{\text{slope}} \)
 – h: Planck’s Constant
 – c: Speed of Light
 – k: Boltzmann’s Constant
$T=158.7 \text{ K}$
Data Filtering

- Noisy data: Clouds and Alignment
- Peak intensity greater than 0
- Peak intensity 10x higher than average
- Linear pattern with negative slope
- Chi square value < .05
No Filtering
Peak Intensity Greater Than 0
Peaks 10x Average
Linear Pattern With Negative Slope
Chi Square Value < .05
Comparison With Expected Results

• Change in Temperature
 – Expected: 30 K

• Average Temperature
 – Expected: 195 K

• Too few valid points were found to attempt fitting a terdiurnal wave curve

<table>
<thead>
<tr>
<th>Date</th>
<th>Delta T (K)</th>
<th>Average T (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 09-10</td>
<td>93.44098</td>
<td>350.4082</td>
</tr>
<tr>
<td>Jul 12-13</td>
<td>154.9807</td>
<td>172.7274</td>
</tr>
<tr>
<td>Jul 13-14</td>
<td>161.4956</td>
<td>403.7898</td>
</tr>
<tr>
<td>Jul 18-19</td>
<td>146.4787</td>
<td>192.8737</td>
</tr>
<tr>
<td>Jul 19-20</td>
<td>392.6729</td>
<td>279.9498</td>
</tr>
</tbody>
</table>
Future Study

• More nights needed for sampling
• Improve alignment method
• Longer sampling periods
• Total band intensity
Image Credits

• Background Image
 Whitworth University High Altitude Ballooning

• Hydroxyl Emission Profile

• OH 3-1 Band
References

Questions?

Thanks to all who helped me this summer!