We are currently using Principal Component Analysis (PCA) to analyze the morphology of a vast range of profiles with varying inclination angles i, degrees of absolute and differential rotation φ and $\dot{\varphi}$, and varying degrees of microturbulence ξ. PCA is a pattern recognition technique whose eigenprofiles we are using to look at the “principal components” of our stellar spectra. PCA involves performing singular value decomposition on a covariance matrix C from N profiles M_i (observation matrix X).

$$X = M C^{1/2} U V^T$$

Where X is the singular value decomposition (SVD) of the covariance matrix C.

For this SVD of the covariance matrix C, $C^{1/2}$ contains eigenvalues λ_i, ξ_i, which correspond to eigenvectors U_i. In other words, C can be reconstructed $X=U \Sigma V^T$, where Σ contains λ_i, ξ_i, and corresponding eigenprofiles are reconstructed in eigenvectors U_i. These eigenprofiles are the “principal components.”

To the right is an example of our first two eigenprofiles while varying only inclination, differential rotation φ, and microturbulence ξ.

References and Acknowledgements

Rave et al. 1998, A&A
Van Zeijl, D. 1994, Will Flanagan, C.
Rees et al. 1999, A&A
Van de Hulst, H. 1950, Phys.

Much thanks to Keith MacGregor, Roberto Casini, Emily Cobabe-Amman, the REU program, and the High Altitude Observatory!