Statistical Prediction of Solar Flares Using Line of Sight (LOS) Magnetogram Data

Jacinda Knoll

Mentors: K.D. Leka and Graham Barnes
Outline

- Importance of Solar Flare Prediction
- Data and Method Used
- Special Considerations
- Data Preparation
- Results
- Summary
- Areas for Further Research
Importance of Solar Flare Prediction

• Cannot “Now-Cast” as effects travel at speed of light
 - Cause damage at same time as detection
• Satellite disruption
• Astronaut Safety
• X-Ray radiation alters ionosphere
 - Loss of communication
 • Especially in short-wave bands
Data and Process

• **Data Being Used**
 - MDI Line of Sight (LOS) Magnetogram Data
 - Observations from 1996-2004
 - 204 x 204 pixel images centered on every active region observed

• **Statistical Technique**
 - Discriminant Analysis
 • Same technique being used for the IVM data
Special Considerations: LOS Data

• Advantages
 − Nearly 20,000 raw data points, with between 6,000 and 10,000 points with good data
 − Large sample sizes needed for statistics (especially non-parametric)

• Disadvantages
 − Cannot calculate many of the parameters available for vector magnetogram data (e.g. J_z, H_c, ψ_{NL})
 − Data further from disc center less reliable due to observing angle correction factor
Example

Fairly good data...

...gets worse and worse.
Data-Checking

• Data had to be pared down before analysis
 - Removal of bad instrument data
 • 11586 good points out of 19295 total points: 60% of data
 - Created IDL keywords to specify different limits to place on the data
 • Distance from disk center to throw out magnetogram
 • Distance from disk center to zero out data
 - Allows greater control over the analysis
Results

- Predictive Power of DA varies year to year
 - Why?

- Quantification of Unreliability Further from Disk Center
 - Decrease of nearly 200% from Disk Center to 45 degrees out

- Potential Field Correction Does Not Improve Results
 - Although it is an improvement on observing angle correction
Variation with Year

• One Hypothesis
 - More magnetograms give better results
 - Weak trend to support this as more data seems to give a higher skill score

• Not the only possible explanation
Variation with Year

- First hypothesis called into question by “All Data” anomaly
- Weak possible trend not supported

- Alternative Explanation
 - Predictive power somehow tied to solar cycle
 - Need more data to confirm
Decrease in Skill Score with Distance from Disk Center
Differences in Data

Includes data within 45° of disk center

Includes data within 60° of disk center
Who Cares?

• Researchers want large datasets
 – Often try to stretch the limits with LOS data

• Many say up to 60 degrees is acceptable using observing angle correction
 – Definitely not the case
 – Even 45 degrees is questionable
Potential Field Correction

• “Mu Correction” not an accurate measure of magnetic field on the sun
• Potential field correction method models active regions as potential fields instead of assuming all magnetic field is perpendicular
• Approximation produced similar results to the mu correction
Mu Correction vs. Potential Field

- In some cases, mu does better, in some cases, potential field does better (black crosses are mu, blue stars are PF)
Not the Final Word

- Consistently greater difference between the potential field correction and observing angle correction further from disk center
Comparison with Peer Parameters

• R Parameter posited by Schrijver in 2007 paper
 - Locations of strong opposite-polarity magnetic fields adjacent to each other
 - Declared as proxy for photospheric electrical currents

• Uses Data Set from 1999 – 2006
• Implemented in Code, but still working out bugs
 - Unable to compare results
Summary of my Summer

• Analysis Code Edited to Allow User to Choose Data Limits
• Discovered annual variations in predictive power
• Quantitatively confirmed unreliability of data far from disk center
• Investigated difference between observing angle correction and potential field correction
Future Research Possibilities

• Add more data to flush out reason behind annual variations
• See how far potential field correction can be extended beyond observing angle correction
• Fix code for Schrijver's R parameter and investigate differences in results
• Compare four-year results for similar parameters with IVM data
• Analyze differences in results between parametric and non-parametric DA
 - LOS ideal for NPDA because of large dataset