Propagation Delay Prediction of Interplanetary Shocks to Earth’s Magnetosphere: An Exploration of Methods

Shane Witters Hicks1,3 and Michele Cash2,3

1Principia College, Elsah, IL, USA
2Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
3National Oceanic and Atmospheric Administration (NOAA), Space Weather Prediction Center (SWPC), Boulder, CO, USA

This research was supported by NSF REU grant 11507020 to the University of Colorado.

Abstract
The use of a flat-plane propagation method (referred to as convection delay) to predict arrival times of CMEs and other solar-wind discontinuities results in significant error. Consequently, finding a method to accurately calculate the normal tilt of shock phase fronts, and thus improving on propagation-delay predictions, has become a topic of interest amongst space-weather researchers. A modified minimum variance analysis method, a cross product method, and a method that combines both of these techniques (MVAB-0, CP, and MVCP, respectively), have been suggested for use in calculating such a normal. Using ACE data from 104 sudden-impulse generating shocks, we present findings from our attempts to discover correlations between three shock parameters and delay error. After a coarse optimization of parameters, we also display results from an in-depth analysis on the effectiveness of the three techniques compared to convection delay. Synthesizing insights gained from our work, we are able to propose a shock propagation-delay prediction method to be used in real-time to aid forecasters at NOAA SWPC.