Examining the Impact of Prandtl Number and Heat Transport Models on Convective Amplitudes

Bridget O’Mara, Mark Miesch, Kyle Augustson, Nicholas Featherstone
Regis University, 3333 Regis Blvd. Denver, CO
HAO, Boulder, CO
Some Definitions

• Convection describes the transport of heat by the motion of a fluid.

• Convective Amplitude refers to the root mean squared velocity (v_{rms}) of convection.

• Recall: Kinetic Energy (KE) $\propto v_{rms}^2$.
Why Study it?

• Convection: IT’S EVERYWHERE!!!

The Rayleigh number describes heat transfer between a hot and cold plate.

\[R \downarrow a = a \Delta T g D^3 / \mu r \kappa^2 \]

http://www.mis.mpg.de/applan/research/rayleigh.html
Other reasons

- Magnetic Field Generation
- Coronal Mass Ejections
- Solar Flares
What is the Prandtl Number?

• Ratio of the viscous diffusivity to the thermal diffusivity, where:

 • $v =$ viscous diffusivity

 • $k =$ thermal diffusivity

So (mathematically) $Pr = \frac{v}{k}$

Which is inversely proportional to the Rayleigh number

$Ra = \frac{a \Delta T g D^3}{Pr \kappa^2}$
• Typically, we expect to see an increasing KE with an increasing Rayleigh number and increasing $\frac{1}{\kappa}$
2 parts to Convection:

- Small scale surface convection
- Large scale deep convection
- Scales too far apart for any computer to replicate
Pleiades
NASA's fastest supercomputer

The Navier Stokes Equations under an anelastic constraint

• The Navier-Stokes equations describe the relationship among velocity, pressure, temperature, and density within a moving fluid (i.e., convection)

Based on the conservation equations:
• Conservation of Mass
• Conservation of Momentum
• Conservation of Energy

• Anelastic constraint:
 \[\nabla \cdot (\rho \mathbf{v}) = 0 \]
Fluxes in the Sun

- Heat transport can be described with the fluxes:
 - Radiative
 - Enthalpy & Kinetic Energy
 - Conductive

The sum of these fluxes adds to constant:

\[\frac{L_\odot}{4\pi r^2} \quad \text{(or) } F_\odot \]

\[L_\odot = \text{Luminosity of the Sun} \]

http://www.astronomy.ohio-state.edu/~pogge/TeachRes/Ast162/Stars/index.html
Fluxes in the Sun

Conservation of Energy:

\[\rho T \frac{\partial S}{\partial t} = - \nabla \cdot (F_{\text{rad}} + F_{\text{e}} + F_{\text{k}} + F_{\text{cond}}) \]

Problem: \(F_{\text{cond}} \propto -\kappa \frac{dS}{dr} \rightarrow \) As \(\kappa \) decreases, \(v_{\text{rms}} \) increases, and no longer matches observations of the sun (\(\kappa_{\text{sun}} \sim 10^{17}, \kappa_{\text{model}} \sim 10^{12} \))

Recall: \(F_{\text{cond}} \) represents small scale convection
For Example...
Conclusion: We might need a new model to replace F_{cond}.
New model

- We add a new flux, the granulation flux, to F_{cond}
 $F_g = F_\odot (0.5+0.5\tanh x)$
- Where $x = r - r_g/d_g$
 (r_g and d_g are constants)
- $0.5+0.5\tanh x$ satisfies the boundary conditions:
 \[
 \lim_{x \to 0} F_g = 0 \quad \text{and} \quad \lim_{x \to \infty} F_g = F_\odot
 \]
- Advantage: F_g is not proportional to $-\kappa dS/dr$
 so we can lower κ without raising the velocity
Comparing the new vs. the old

- KE vs time
- Flux balance
- Power spectra
- Convection structure
- u_{rms} vs. $1/\kappa$
KE vs. Time

- Without $F_{\downarrow}g$
- With $F_{\downarrow}g$

![Kinetic Energy vs. Time for changing values of kappa](image1.png)

![Kinetic Energy vs. Time for changing values of kappa](image2.png)
Flux Balances

- Without $F_{\downarrow\sigma}$

- With $F_{\downarrow g}$

Note: $F_{\downarrow g}$ has been added to $F_{\downarrow rad}$
Flux Balances

- Without $F_{\parallel g}$

- With $F_{\parallel g}$
Flux Balances

- Without $F\downarrow g$
- With $F\downarrow g$

Avg flux balance for kappa = 4×10^{12}

![Graph showing energy flux through the shell vs. radius for different flux components with and without $F\downarrow g$.]
Power Spectra

- Without $F_{\downarrow g}$
- With $F_{\downarrow g}$

$\text{Wave number} = \frac{2\pi}{L}$, Where L is the length of an eddy
Convection Structure

- Without $F \downarrow g$

- With $F \downarrow g$

- Colored bars show $v_{r.m.s.}$ value (cm/s)
Convection Structure

- Without $F \downarrow g$
 - $\kappa = 6 \times 10^{12}$
 - $F = 0.93$
 - $F = 0.91$
 - $F = 0.87$

- With $F \downarrow g$
 - $\kappa = 6 \times 10^{12}$
 - $F = 0.93$
 - $F = 0.91$
 - $F = 0.87$
Convection Structure

• Without $F \downarrow g$

• With $F \downarrow g$
Recall: \(R \downarrow a \propto KE \propto 1/\kappa \)
Results:

- Opposite from expected

Why?
Prandtl Number Effect Tests

• Recall $P\downarrow r = \nu/\kappa$

• Ran tests varying ν and κ to observe the Prandtl number effect on convective amplitude
- Models correspond when Prandtl number is constant
• We can plot against the v_{rms} (convective amplitude) instead of KE to get a better look at the Prandtl Number Effect.

• The convective amplitude (i.e., v_{rms}) decreases with increasing Prandtl number.
Summary

• The structure and amplitude of deep convection is similar for both models of surface convection considered (conduction and fixed-flux)
 - Suggests that deep convection is not very sensitive to the details of the surface convection

• The Prandtl number makes a big difference on the convective amplitude!
 - As kappa is decreased, holding Pr constant, vrms increases
 - As kappa is decreased, holding nu constant (increasing Pr), vrms decreases! (surprise!)
 - The second situation (increasing Pr) is very promising because vrms in current convection simulations might be too big and the real kappa of the Sun is very small
What’s next?

• Testing the following Hypothesis:

 • T^\uparrow, in the middle of the convection zone, increases as you decrease κ.

 • Where $F\downarrow e \propto v\downarrow rms T^\uparrow \approx F\downarrow \odot$

 • If true, explains decreasing $v\downarrow rms$ with increasing Prandtl number
Questions?
Flows in the Sun

- The Solar Dynamo generates magnetic fields from the flows:
 - Convection
 - Differential rotation
 - Meridional Circulation

Fusion
mass \rightarrow radiation & thermal energy
Convection
thermal Energy \rightarrow kinetic energy
Dynamo
kinetic energy \rightarrow magnetic energy
• Tips: highlight important words in different colors
The whole story?

Maybe not...

This is exciting!

Disagreeing Observations

Something new under the Sun?