Measured solar spectral irradiance variability using the SORCE SIM

Jerald Harder
Juan Fontenla
Erik Richard
Martin Snow
Thomas Woods

Laboratory for Atmospheric and Space Physics (LASP)
University of Colorado
Discussion Topics

• Review of the SIM instrument
 – Detectors and spectral ranges, resolution, sampling
 – Instrument configuration

• The SIM measurement equation

• Sources of noise
 – ADC noise limited performance on photodiodes
 – Noise spectrum of the ESR

• Sources of irreversible time dependent degradation
 – Prism degradation – the dominant source of instrument sensitivity loss
 – Effects of spacecraft safe-hold events
Instrument Overview

- **Instrument Type:** Féry Prism Spectrometer
- **Wavelength Range:** 200-2400 nm
- **Wavelength Resolution:** 0.24-34 nm
- **Detector:** ESR, n-p silicon, InGaAs
- **Absolute Accuracy:** 2-8%
- **Relative Accuracy:** ~0.5-0.02% (210-2400 nm)
- **Long-term Accuracy:** 0.3-0.02%/yr (210-2400 nm)
- **Field of View:** 1.5x2.5° total
- **Pointing Accuracy/Knowledge:** 0.016°/0.008°
- **Mass:** 21.9 kg
- **Dimensions:** 88 x 40 x 19 cm
- **Orbit Average Power:** 17.5 W
- **Orbit Average Data Rate:** 1.5 kbits/s
- **Redundancy:** 2 Redundant Channels

\[
\lambda = 2423 \\
\int E(\lambda) \, d\lambda \approx 1324.49 \text{ Wm}^{-2} \\
\lambda = 201 \\
\approx 97.3\% \text{ of TSI} \\
\Leftrightarrow 36.32 \text{ Wm}^{-2} \text{ missing from TSI}
\]

Corrections based on measured telemetry

- No assumptions are made about magnitude, slope, or time dependent behavior of SSI.
- Method of degradation correction is similar to the method used to correct TSI instruments but done as a function of wavelength.
- Degradation Corrections:
 - Exposure-related prism transmission loss accounts for the majority of sensitivity loss in SIM
 - Correct by comparing two spectrometers at different exposure rates
 - These spectrometers are in the same, physical, chemical, and thermal environments, so instrument changes are common mode.
 - Non-exposure related effects from space and spacecraft environment must be handled independently from prism transmission.
 - Correct ESR gain changes through routine gain measurement experiments
 - Correct photodiode detectors by comparing with the ESR’s
 - Identify time periods when the instrument is affected by spacecraft disturbances
Instrument Configuration

SIM A: Cross section in dispersion direction (SIM B mirror image)

1/2° Solar Input Beam

- Stability of the ESR anchors the corrections for SIM
 - Energetic photons do not make it to the ESR
 - Input flux is very small (<60 μW)
 - Critical power replacement resistors and 7.1 V reference are radiation hard
 - Weekly ESR gain measurements test and correct the ‘softer’ ESR electronics

- Only one optical element to degrade through transmission loss

- Transmission loss probably arises from exposure of the prism to energetic solar photons:
 - Directly induce compositional changes in the first few monolayers of the glass
 - Transmission losses due to polymerization of trace amounts of organic materials on the surface
Fundamental SIM Measurement Equation

\[E(\lambda) = \frac{\text{measuredDetectorCounts}(\lambda)}{\text{entranceApertureArea} \times \text{detectorResponseFunction}(\lambda) \times \text{spectralBandwidth}(\lambda) \times \text{OpticalTransmission}(\lambda) \, d\lambda} \quad \text{(units of Wm}^{-2}\text{nm}^{-1}) \]

ESR Power (phase sensitive detection)

\[E_{\text{ESR}}(\lambda_s, t) = \frac{1}{A_{\text{slit}}(T)} \int \alpha(\lambda) \, Tr_0(\lambda) \, \Phi(\lambda) \, S(\lambda_s, \lambda) \, d\lambda \times \frac{1}{1 - a_{\text{ESR}} \exp(-\kappa(\lambda)C(t)) + (a_{\text{ESR}}) \exp\left(-\frac{\kappa(\lambda)C(t)}{2}\right)} \]

Profile Integral

\[E_{\text{Diode}}(\lambda_s, t) = \frac{V_{\text{max}}}{M} \left\{ \frac{D - D_0}{R_f} \right\} \int A_{\text{slit}} \int R_s(\lambda, t, T) \, Tr_0(\lambda) \, \Phi(\lambda) \, S(\lambda_s, \lambda) \, d\lambda \times \frac{1}{1 - a_{\text{diode}} \exp(-\kappa(\lambda)C(t)) + (a_{\text{diode}}) \exp\left(-\frac{\kappa(\lambda)C(t)}{2}\right)} \]

ORBIT Correction

\[\frac{1}{f_{\text{au}}} \times \frac{1}{f_{\text{doppler}}} \]

Detector photocurrent

Exposure related degradation

Non-exposure related degradation
Sources of Uncertainty in the SIM Time Series

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause</th>
<th>Effect</th>
<th>Mitigation/magnitude of effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short-term effects – do not accumulate with time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Detector Noise</td>
<td>Ultimate limit of comparison of two spectra</td>
<td>ESR: 10^{-3} to 10^{-5} Diodes; 3×10^{-3} to 5×10^{-5}</td>
</tr>
<tr>
<td>2</td>
<td>Spacecraft pointing</td>
<td>Local perturbation in prism transmission/wavelength shift</td>
<td>Can produce spurious noise on the order of 1%, problem fixed through data masking</td>
</tr>
<tr>
<td>3</td>
<td>Detector Temperature</td>
<td>Spurious structure to photodiode data (700-900 nm range)</td>
<td>Adds about 500 ppm of noise at these wavelengths, refinements needed in processing.</td>
</tr>
<tr>
<td>4</td>
<td>Prism Temperature</td>
<td>Wavelength shift</td>
<td>Corrected to ~150 ppm in data processing</td>
</tr>
<tr>
<td>5</td>
<td>Scattered light</td>
<td>Increases apparent irradiance – decreases contrast in ‘lines’</td>
<td><100 ppm in ESR, VIS, IR detectors, <0.5% in UV photodiode, not corrected</td>
</tr>
<tr>
<td></td>
<td>Long-term effects – accumulate with time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Prism Transmission</td>
<td>Long-term reduction in instrument response.</td>
<td>Residual uncertainty 0.3-0.01%/yr</td>
</tr>
<tr>
<td>2</td>
<td>Optical alignment changes</td>
<td>Produces ‘jumps’ in the data at well-defined times</td>
<td>Problem significant after 2009/01/01 uncertainty ~0.1% in certain wavelength bands</td>
</tr>
<tr>
<td>3</td>
<td>Photodiode Radiant sensitivity</td>
<td>Reduction in photodiode sensitivity (750-950 nm range)</td>
<td>Comparisons to ESR; Comparable to diode noise ~10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>ESR servo gain degradation</td>
<td>Reduction in responsivity of the ESR detector</td>
<td>7 ppm/year, uncertainty ~1 ppm/year</td>
</tr>
</tbody>
</table>
Detector Noise
Short Term effects: ESR Detector Noise

- Noise spectrum invariant with time
- Other effects (λ-shift, roll effects) can reduce the effective precision of the measurement
 - Typical noise level ~ 4 nW, 50 sec half cycle, 2 cycles
Short Term effects: Photodiode Noise

- Photodiode noise determined by noise on the ADC - not photon noise.
 - Output of photodiode detectors multiplex and read-out by the same ADC, therefore noise level is common to all photodiode detectors.

- Noise levels have not changed over the course of the mission, independent of where in the orbit the spectrum is taken (i.e. no SAA effects)

- Distribution of noise independent of whether shutter is opened or closed.
 - Determined from daily darks and 2005/2006 fixed wavelength experiments
Noise Equivalent Irradiance

Contours of signal-to-noise ratio are relative to the ESR 50 sec half-cycle, 200 sec integration.
Prism Degradation
Working assumption for prism/ESR degradation correction

- **Degradation is proportional to exposure**
 - SIM B has only ~1/4 of the exposure of SIM A
 - A function $F(t)$ can be found that produces the same trends in A&B channels
 - This is reasonable since the two instruments are in the same physical enclosure and their environment cannot evolve independently
Lambert's Law: \[I(\lambda) = E(\lambda) e^{-\tau} \]

For a single wavelength, \(\lambda \). At two times 0 and 1.

\[
\ln(I_{A0}) = \ln(E_0) - \tau_{A0}, \quad \ln(I_{A1}) = \ln(E_1) - \tau_{A1}
\]
\[
\ln(I_{B0}) = \ln(E_0) - \tau_{B0}, \quad \ln(I_{B1}) = \ln(E_1) - \tau_{B1}
\]

Combine and recase equations for SIM A & B in terms of measured quantities:

For SIM A: \[
\ln \left(\frac{I_{A1}}{I_{A0}} \right) = \ln \left(\frac{E_1}{E_0} \right) - F(t) \cdot \Delta X_{A0\rightarrow A1}
\]

For SIM B: \[
\ln \left(\frac{I_{B1}}{I_{B0}} \right) = \ln \left(\frac{E_1}{E_0} \right) - F(t) \cdot \Delta X_{B0\rightarrow B1}
\]

\[F(t) = \text{Time dependent degradation factor} \]
\[\Delta X_{A0\rightarrow A1} \text{ or } \Delta X_{B0\rightarrow B1} = \text{Measured exposure time between times } t=0 \text{ and } t=1 \]
Determination of the Degradation Function

\[
F = \frac{\ln \left(\frac{I_{B1}}{I_{B0}} \right) - \ln \left(\frac{I_{A1}}{I_{A0}} \right)}{\Delta X_{A_{0\rightarrow1}} - \Delta X_{B_{0\rightarrow1}}}
\]

Degradation accumulates with time and must be determined for each wavelength.

\[
\tau_A(\lambda, t_1 - t_0) = \int_{t_0}^{t_1} F(\lambda, t') \frac{\partial X_{A_{0\rightarrow1}}}{\partial t'} dt + \text{Const.}
\]

(analogous for SIM B)

Decompose \(\tau(\lambda, t_1 - t_0) \) into two components:

- \(C(t_1 - t_0) \) a time dependent part
- \(\kappa(\lambda) \) a wavelength dependent part

Then:

\[
\tau_{A_{orb}}(\lambda, t_1 - t_0) = \kappa(\lambda)C_{A_{orb}}(t_1 - t_0)
\]

The degradation correction is:

\[
E_{A_{orb}}(\lambda, t) = \frac{I_{A_{orb}}(\lambda, t)}{\exp(-\kappa(\lambda)C_{A_{orb}}(t_1 - t_0))}
\]
Time Series of Degradation Corrected Irradiance

- Perturb the value of $\kappa(\lambda)$, apply to both SIM A & B
- Time series for the two instruments will diverge because the rates of exposure are different
 - Provides a method to estimate the uncertainty in $\kappa(\lambda)$

\[
\frac{\Delta \tau}{\tau} = \frac{\Delta \kappa}{\kappa} \quad \frac{\Delta \kappa}{\kappa} \leq 0.02 \quad (\pm 2\sigma)
\]

\[
\frac{\Delta E_{\text{degradation}}}{E} = \Delta \tau = \kappa(\lambda) \left(C_{t_1} - C_{t_0} \right) \frac{\Delta \kappa}{\kappa}
\]
Contributions of Uncertainty to trend

- Time range 2004/06/1-2007/11/15, 1262 days, 3.45 years
- $\Delta N_{\text{esr}} = 4nW$
Transfer ESR correction onto adjacent photodiodes

\[
\frac{E_{\text{corrected}}}{E_{\text{uncorrected}}} = \left(1 - a_d\right) \exp(-\tau(\lambda, t)) + a_d \exp\left(-\frac{\tau(\lambda, t)}{2}\right)
\]

- No pristine area on the surface of the prism and different light paths through the prism encounter different amounts of absorbing material.
- \(a_d\) initially estimated from ray traces and then adjusted to match the trends seen in the ESR.
Effects of OBC Anomalies and Wavelength Stability
SIM A: Cross Dispersion Direction

Date

\[\gamma = (1 + \alpha) \gamma_z + \frac{1}{2} \tan^{-1}\left(\frac{(C - C_z) \times p \times (1 + \beta)}{F_{\text{REF}}}\right) \]

\[n_{\text{vis}1} = \frac{1}{\sin(2\theta_p)} \sqrt{\sin^2(\gamma) + 2 \cos(2\theta_p) \sin(\gamma) \sin(\gamma - \phi) + \sin^2(\gamma - \phi)} \]
Status of SIM after October 2010

- 4 different safe-hold events since September 26, 2010 caused observatory temperatures to drop below -15°C producing small be noticeable changes in the responsivity of SIM.
 - The cause of these anomalies has been corrected in flight software

- Because of decreased battery capacity, power cycling on every orbit started on 2011/05/04
 - Power cycling has no instrument safety issues and has not disrupted normal data acquisition
 - Detectors have 3-5 degree temperature swings
 - Prism temperature drifts continuously (~1.5°C) but does not effect data processing
 - ~1 year of data may be needed to detect second order effects
Effects of SORCE Anomalies

- OBC events cause a change in the orientation of the steering mirror relative to prism face, wavelength correction performed but it re-maps the CCD pixels onto the wavelength scale.

Spacecraft Events

- 05/18/2007
- 01/09/2009
- 10/19/2009
- 10/14/2009
- 09/26/2010
- 12/26/2010
- 01/28/2011
- 05/13/2011
- 09/06/2011
Optical alignment changes

- Wavelength drive exhibits remarkable precision over very long time periods
 - Wavelength registration within the limits set by hardware
 - Cardinal wavelength step = 38 subpixel steps, precision ~ 1/38 of a step

±1 CCD subpixel = 0.7 arc-sec/subpixel
Current SIM Data Composite

- OBC anomalies after 2007 disrupt the continuity of the A-to-B data
- Spectra from the two channels are valid in a piecewise sense
- Connecting data sets after OBC events is a ‘compositing’ activity and induces discontinuous uncertainty beyond AB comparisons
- Alternate/improved methods are understudy to correct and effectively concatenate the pieces.
• No systematic slope through the data, suggests no common-mode degradation
Conclusions

• Long-term degradation corrections in SIM are based solely on measured instrument quantities.
 – Correction is based on the comparison of two identical (mirror image) spectrometers that have been exposed at different rates.
 – Corrections for photodiode detectors in the same channel are made by comparison with the spectrally flat ESR detector after correcting for the different optical paths through the prism.
 – Safe hold events decrease the precision after 2009, further work is underway to correct the influence of these events.
Additional Uncertainty Analyses
Sources of Uncertainty in the SIM Time Series

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Cause</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term effects – do not accumulate with time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Detector Noise</td>
<td>Ultimate limit of comparison of two spectra</td>
</tr>
<tr>
<td>2</td>
<td>Spacecraft pointing</td>
<td>Perturbation in prism transmission/wavelength shift</td>
</tr>
<tr>
<td>3</td>
<td>Detector Temperature</td>
<td>Spurious structure to photodiode data (700-900 nm range)</td>
</tr>
<tr>
<td>4</td>
<td>Prism Temperature</td>
<td>Wavelength shift</td>
</tr>
<tr>
<td>5</td>
<td>Scattered light</td>
<td>Increases apparent irradiance – decreases contrast in ‘lines’</td>
</tr>
<tr>
<td>Long-term effects – accumulate with time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Prism Transmission Degradation</td>
<td>Long-term reduction in instrument response. Effect is irreversible</td>
</tr>
<tr>
<td>2</td>
<td>Photodiode Radiant sensitivity</td>
<td>Reduction in photodiode sensitivity (750-950 nm range)</td>
</tr>
<tr>
<td>3</td>
<td>Optical alignment changes</td>
<td>Produces ‘jumps’ in the data at well-defined times</td>
</tr>
<tr>
<td>4</td>
<td>ESR servo gain degradation</td>
<td>Reduction in responsivity of the ESR detector</td>
</tr>
</tbody>
</table>
Short Term effects: Scattered Light

- Scattered light contribution dominated by polish on prism (near-field scattering)
- Reflections from prism ⇒ cavity ⇒ detector (far-field scattering) are baffled in front of prism & in front of detectors.
- Scattered light cannot be detected above noise level of the instrument. No corrections made in data processing.
Short Term effects: Scattered Light

- At the same resolution feature depths match (though absolute scales differ) indicating little discernible scattered light in either instrument.
- Reflects fidelity in determination of the instrument profile integral.
Short Term effects: Temperature

- Index of refraction a function of temperature and effects wavelength reaching the detectors – if not corrected induces wavelength shift
 - Temperature of the prism(s) monitored and corrected continuously in data processing
- Radiant sensitivity is weakly temperature dependent – induces temperature structure in irradiance in the 900-1000 nm range
 - Processing includes a temperature correction, imprecision due to gradients between temperature sensor and the photodiode.
Short Term effects: Temperature

- Prism Temperature variation of ~1.2 °C
- \(P-p \) \(\lambda \) shift ~0.04 nm
- less than 1/4 of cardinal prism step.
- Corrected in data processing

- Residual structure in irradiance related to inaccurate corrections for diode temperature
- Adds uncertainty of <0.1% to determining long-term trend in the 900-1000 bands.
Short Term effects: Spacecraft Pointing

- Roll maneuvers contaminate only 2.8% of the viable science data
- Effects of rolls tend to preferentially effect data towards the end of scans but can effect any portion of the scan.
- Not all ‘spikes’ in the data are identifiable as caused by roll maneuvers and vice versa
 - ‘De-spike’ more practical than filtering: no correction made in data processing
Sources of Uncertainty in the SIM Time Series

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Cause</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term effects – do not accumulate with time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Detector Noise</td>
<td>Ultimate limit of comparison of two spectra</td>
</tr>
<tr>
<td>2</td>
<td>Spacecraft pointing</td>
<td>Perturbation in prism transmission/wavelength shift</td>
</tr>
<tr>
<td>3</td>
<td>Detector Temperature</td>
<td>Spurious structure to photodiode data (700-900 nm range)</td>
</tr>
<tr>
<td>4</td>
<td>Prism Temperature</td>
<td>Wavelength shift</td>
</tr>
<tr>
<td>5</td>
<td>Scattered light</td>
<td>Increases apparent irradiance – decreases contrast in ‘lines’</td>
</tr>
<tr>
<td>Long-term effects – accumulate with time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Prism Transmission Degradation</td>
<td>Long-term reduction in instrument response. Effect is irreversible</td>
</tr>
<tr>
<td>2</td>
<td>Optical alignment changes</td>
<td>Produces ‘jumps’ in the data at well-defined times</td>
</tr>
<tr>
<td>3</td>
<td>Photodiode Radiant sensitivity</td>
<td>Reduction in photodiode sensitivity (750-950 nm range)</td>
</tr>
<tr>
<td>4</td>
<td>ESR servo gain degradation</td>
<td>Reduction in responsivity of the ESR detector</td>
</tr>
</tbody>
</table>
Long Term effects: ESR Gain

- Gain change discernable, but small
- Change in SIM B comparable to SIM A
 - \[G_{\text{open}} = (68.541 \pm 0.018) + (-7.78 \pm 0.86) \times 10^{-5} \quad r^2 = 0.16238 \]
- Corrections made in data processing
Long Term effects: Photodiode Radiant Sensitivity changes

- High Energy Particle Spectrum
 - High energy particles (particularly protons) penetrate deep into the instrument case

- The majority of high energy particles will be protons
 - Shielding ineffective against proton penetration
Photodiode Radiant Sensitivity changes

Photon absorption is a necessary condition to produce a photoelectron.

The photoelectric effect occurs over a very broad depth scale:

Degradation processes at the skin will behave differently than the bulk processes.

Radiation damage in the base of the diode decreases L_b (minority carrier diffusion length) and effectively moves α_{max} to shorter wavelengths (larger α).

L_{skin} dominates the diode's performance at the shorter wavelengths.

Radiation testing suggests p-n diode incurs greater damage than n-p:

- $\sim 100x >$ for electrons, $\sim 3x >$ for protons

SIM Measurement Equation and Error Budget

\[E(\lambda_s) = \frac{P_{ESR}(\lambda_s)}{A_{slit} \int \alpha_{\lambda} T_{\lambda} \Phi_{\lambda} S(\lambda, \lambda_s) d\lambda} \quad \text{or} \quad E(\lambda_s) = \frac{P_{detector}(\lambda_s)}{A_{slit} \int R_{\lambda} T_{\lambda} \Phi_{\lambda} S(\lambda, \lambda_s) d\lambda} \]

<table>
<thead>
<tr>
<th>Term (units)</th>
<th>Symbol</th>
<th>Value/Range</th>
<th>Uncertainty</th>
<th>Derived from:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (nm)</td>
<td>(\lambda)</td>
<td>265-2423</td>
<td>0.2 ± (\lambda \times (150 \times 10^{-6}))</td>
<td>(\lambda) standards, solar spectrum</td>
</tr>
<tr>
<td>Power (watts) of the ESR</td>
<td>(P)</td>
<td>1×10^{-7} - 5×10^{-5}</td>
<td>~2×10^{-9} WHZ^{1/2}</td>
<td>Detector testing</td>
</tr>
<tr>
<td>Entrance slit area (mm²)</td>
<td>(A_{slit})</td>
<td>2.1</td>
<td>5×10^{-5}</td>
<td>Slit diffraction</td>
</tr>
<tr>
<td>ESR optical efficiency (%)</td>
<td>(\alpha_{\lambda})</td>
<td>100</td>
<td>+0 to -2 (200-1000 nm) +0 to -10 (1000-2700 nm)</td>
<td>SIRCUS, flight spare ESR (measured in power mode)</td>
</tr>
<tr>
<td>Photodiode radiant sensitivity (amps/watt)</td>
<td>(R_{\lambda})</td>
<td>0.08 -1.0</td>
<td>2-4% (wavelength dependent)</td>
<td>Comparisons with ESR</td>
</tr>
<tr>
<td>Prism transmission (%)</td>
<td>(T_{\lambda})</td>
<td>0.55-0.77</td>
<td>±0.1% 200-700 nm ≥ ±1% 700-2700 nm</td>
<td>Laboratory measurements (see Harder et al, 2005a)</td>
</tr>
<tr>
<td>Diffraction loss (%)</td>
<td>(\Phi_{\lambda})</td>
<td>0.3-2.2</td>
<td>~0.01</td>
<td>Diffraction theory</td>
</tr>
<tr>
<td>Instrument function area (nm)</td>
<td>(S)</td>
<td>0.58-34.5</td>
<td>~0.4%</td>
<td>Ray tracing, laser scans</td>
</tr>
</tbody>
</table>

Time series of solar spectral variability from SORCE

Integrated SIM 200-2423 nm: 1324.49 W m$^{-2}$
TSI (T1M): 1260.81 W m$^{-2}$

Precision estimate on integrated SIM:
1σ = \sim0.2 W m$^{-2}$ (\sim130 ppm)

Decreasing trend with decreasing solar activity

Increasing trend with decreasing solar activity

TSI-like • further refinements in diode degradation needed

Increasing trend with decreasing solar activity • neutral by \sim2000 nm