SOE Science Meeting
December 6-8, Sanomas, California

The registration number for the upcoming SOE Science Meeting - Physical Problem Solving: Solar Radiation and Solar Variability with Global Climate Change - are on up to the event to be held in Sanomas. The event, which is open to the public, will run from Monday, December 1st, to Wednesday, December 3rd. The program will feature various talks, posters, and sessions over the three days. The event is expected to be well-attended and will provide opportunities for networking and discussion among experts in the field. The conference will also include a number of special events, including a gala dinner at the end of the first day. For more information, please visit the SOE Science Meeting website.

Solar Radiation - Status of Current Measurements
- Gray Houghton, C. F. treffry, SOE Science Meeting
- Climate Change Processes Involving Solar Radiation in the Troposphere
 - G. M. Audit, H. Andron, I. Planitz, R. Cuis, SOE Science Meeting
- Solar Radiation in the Stratosphere
 - B. Schneid, M. B. Haring, D. R. Ode, B. Hubert, SOE Science Meeting

The featured speaker at the morning closing on Thursday, December 4th, will be Dr. John Houghton. He will speak on "The Sun and Climate." This scientific gathering of renowned experts includes Robin Leif from NIPR, Peter Wieland from NASA Ames Research Center, and Doug Raschi from GSFC. They are currently working together on an exciting agenda and a schedule of talks and discussions. The event is expected to attract a large audience of scientists and researchers from around the world. The conference will be held from December 1st to 3rd. For more information, please visit the SOE Science Meeting website. (Please refer to the SOE Science Meeting calendar for complete information on the science program, agenda, registration, and venue details. The program will be updated regularly with the latest conference updates and announcements.)

A Closer Look - The SIMD: Instrument - The Specialized Development Mission (SIMD) is making the first consistent record of the top of the atmosphere. Topographic inversion is a difficult problem for the SIM. The SIMD provides specialized equipment for the analysis of modern precipitating precipitation, which includes both a measured electrical signal and a radiometric signal of the precipitation. The paint provides measurement in the microwave region, visible, and near infrared region. The SIMD instrument is housed in a Van Hove's SIMD instrument aboard the LAPT.

The SIMD is equipped with the SIMD and is able to perform the following onboard SIMDs and are a series of the SIMD and SIMDs which provide the scientific scientific interest of the SIMD. Laboratory data collected at LAPT on continues to either the SIMD field in scientific interest. Of particular scientific interest of the SIMD - The instrument will provide the SIMD's onboard measurements. Fermi, Including the SIMD's onboard measurements while operating from the top of the atmosphere. The instrument is being used to complement the SIM's total solar irradiance observations at Solar Maxima. SIM's total solar irradiance observations are important for understanding the Sun's influence on the Earth's climate. This paper has been submitted to the International Journal of Applied Sciences and Engineering.

A Closer Look - The SIMD: Instrument - The Specialized Development Mission (SIMD) is making the first consistent record of the top of the atmosphere. Topographic inversion is a difficult problem for the SIM. The SIMD provides specialized equipment for the analysis of modern precipitating precipitation, which includes both a measured electrical signal and a radiometric signal of the precipitation. The paint provides measurement in the microwave region, visible, and near infrared region. The SIMD instrument is housed in a Van Hove's SIMD instrument aboard the LAPT. The SIMD is equipped with the SIMD and is able to perform the following onboard SIMDs and are a series of the SIMD and SIMDs which provide the scientific scientific interest of the SIMD. Laboratory data collected at LAPT on continues to either the SIMD field in scientific interest. Of particular scientific interest of the SIMD - The instrument will provide the SIMD's onboard measurements. Fermi, Including the SIMD's onboard measurements while operating from the top of the atmosphere. The instrument is being used to complement the SIM's total solar irradiance observations at Solar Maxima. SIM's total solar irradiance observations are important for understanding the Sun's influence on the Earth's climate. This paper has been submitted to the International Journal of Applied Sciences and Engineering.

To demonstrate the solar variability the SIMD can now observe. Figure 3 shows the difference data of the SIMD data on the right hand side and the left hand side of the data. The SIMD data is used to cover a single solar rotation period in a frame of 1.0 months. The graph is cut off so far from the right side. The SIMD data is still being captured and is not fully interpreted in these data sets. The SIMD data is still being captured and is not fully interpreted in these data sets.

Figure 3. In the daily Timecorrelation times for SIMD and the SIMD data on the right hand side, and the average correlation times for SIMD and the SIMD data on the left hand side. Notice the correlation in amplitude and phase of the time series showing the different behaviors in the two correlation times, indicating that the data are being captured and is not fully interpreted in these data sets.

To demonstrate the solar variability the SIMD can now observe. Figure 3 shows the difference data of the SIMD data on the right hand side and the left hand side of the data. The SIMD data is used to cover a single solar rotation period in a frame of 1.0 months. The graph is cut off so far from the right side. The SIMD data is still being captured and is not fully interpreted in these data sets. The SIMD data is still being captured and is not fully interpreted in these data sets.