Spectral Solar Irradiance Requirements for Earth Observing Sensors Operating in the Ultraviolet to Shortwave Infrared

Jim Butler
NASA Goddard Space Flight Center
Code 618 Biospheric Sciences Laboratory
Greenbelt, MD 20771
Ph: 301-614-5942
E-mail: James.J.Butler@nasa.gov

2015 Sun-Climate Symposium
Savannah, GA
November 11, 2015
Presentation Outline

• Reflectance and radiance products from satellite instruments operating from the uv through swir (i.e. the reflected solar wavelength region)
 – UV: BUV instruments (e.g. TOMS, SBUV/2, OMI, GOME-2)
 – Vis/NIR/SWIR: MODIS/VIIRS
• Challenges in the solar diffuser-based on-orbit calibration of reflected solar instruments
• Spectral Solar irradiance in instrument intercomparisons, vicarious calibration, and production of long-term consistent datasets
• Reflectance and radiance products: SI and traceability
• Developing climate benchmark instruments and Spectral Solar irradiance
• Brief summary of discussions and recommendations from the 2014 SORCE Spectral Solar Irradiance Review
The BUV technique measures the Earth’s directional reflectance (top of the atmosphere) through comparison to a solar reflector with known directional reflectance.

\[
L(\lambda, t) = k_r(\lambda) \cdot C_r(\lambda, t) \\
E(\lambda, t) = k_i(\lambda) \cdot C_i(\lambda, t) \\
\frac{L(t, \lambda)}{E(t, \lambda)} = \frac{k_r(\lambda)}{k_i(\lambda)} \cdot \frac{C_r(t)}{C_i(t)} = A(\lambda) \cdot \frac{C_r(t)}{C_i(t)}
\]

\[A \approx BRF_{SD} \cos \Theta_i\]

- \(L(\lambda, t)\): Backscattered Earth radiance
- \(E(\lambda, t)\): Solar irradiance
- \(k_r(\lambda)\): Radiance calibration constant
- \(k_i(\lambda)\): Irradiance calibration constant
- \(C_r(t)\): Earth view signal
- \(C_i(t)\): Solar view signal
- SD: Solar diffuser
- BRF_{SD}: Bidirectional Reflectance Factor of SD
- \(\Theta_i\): Solar incident angle
- A: Albedo calibration

Goal: Detect column \(O_3\) changes to within 1%/decade
Reflectance and radiance products from satellite instruments operating in the Vis through SWIR: MODIS

MODIS (primary) Level 1 SDR reflectance product:

\[\rho_{EV} \cdot \cos(\theta_{EV}) = m_1 \cdot d_{EV}^* \cdot d_{Earth-Sun}^2 \]

\[m_1 = \frac{BRF_{SD} \cdot \cos(\theta_{SD}) \cdot \Gamma_{SDS} \cdot \Delta_{SD}}{<d_{SD}^*> \cdot d_{Earth-Sun}^2} \]

\[\Delta_{SD} = \frac{dc_{SD}}{dc_{Sun}} \]

MODIS Level 1 SDR radiance product:

\[L_{EV} = \frac{E_{Sun} \cdot \rho_{EV} \cdot \cos(\theta_{EV})}{\pi \cdot d_{Earth-Sun(EV)}^2} \]

\[= \frac{E_{Sun} \cdot m_1 \cdot d_{EV}^*}{\pi} \]

where \(E_{Sun} \) is the spectral solar irradiance

\(E_{Sun} \) for MODIS:
- 0.4-0.8 \(\mu \)m Thuillier et al., 1998;
- 0.8-1.1 \(\mu \)m Neckel and Labs, 1984;
- above 1.1 \(\mu \)m Smith and Gottlieb, 1974

SD: Solar Diffuser
SDSM: Solar Diffuser Stability Monitor
SDS: Solar Diffuser Screen
EV: Earth View
\(m_1 \): SD calibration coefficient
\(BRF_{SD} \): Bidirectional Reflectance Factor of SD
\(\Delta_{SD} \): SD degradation factor;
\(\Gamma_{SDS} \): SDS vignetting function
\(d_{Earth-Sun} \): Earth-Sun distance
\(d_{EV}^* \): Corrected digital number (SD or EV)
\(dc \): Digital counts from SDSM (SD or Sun)
\(\theta_{EV} \): Solar zenith angle
\(\theta_{SD} \): Solar incident angle on SD
Reflectance and radiance products from satellite instruments operating in the Vis through SWIR: VIIRS

VIIRS (primary) Level 1 SDR radiance product:

\[
L_{EV} = F \cdot (c_0 + c_1 \cdot d\!n_{EV} + c_2 \cdot d\!n_{EV}^2)
\]

\[
F = \left(\frac{1}{d_{\text{Earth-Sun}}}\right)^2 \cdot \frac{L_{SD} \cdot \cos(\theta_{SD})}{c_0 + c_1 \cdot d\!n_{SD} + c_2 \cdot d\!n_{SD}^2}
\]

\[
L_{SD} = \frac{E_{\text{Sun}} \cdot BRF_{SD} \cdot \Gamma_{SDS} \cdot \Delta_{SD}}{\pi}
\]

\[
L_{EV} = \frac{E_{\text{Sun}} \cdot BRF_{SD} \cdot \cos(\theta_{SD}) \cdot \Gamma_{SD} \cdot \Delta_{SD}}{\pi \cdot d_{\text{Earth-Sun}}^2 \cdot (c_0 + c_1 \cdot d\!n_{SD} + c_2 \cdot d\!n_{SD}^2) \cdot (c_0 + c_1 \cdot d\!n_{EV} + c_2 \cdot d\!n_{EV}^2)}
\]

VIIRS Level 1 SDR reflectance product:

\[
\rho_{EV} = \frac{\pi \cdot F \cdot (c_0 + c_1 \cdot d\!n_{EV} + c_2 \cdot d\!n_{EV}^2)}{\cos \theta_{EV} \cdot E_{\text{Sun}}}
\]

where \(E_{\text{Sun}}\) is the spectral solar irradiance

\(E_{\text{Sun}}\) for VIIRS:
- MODTRAN 4.3

Symbols and Abbreviations:
- SD: Solar Diffuser
- SDSM: Solar Diffuser Stability Monitor
- SDS: Solar Diffuser Screen
- EV: Earth View
- BRF\(_{SD}\): Bidirectional Reflectance Factor of SD
- \(\Delta_{SD}\): SD degradation factor;
- \(\Gamma_{SDS}\): SDS vignetting function
- \(d_{\text{Earth-Sun}}\): Earth-Sun distance
- \(c_0, c_1, c_2\): Non-linearity coefficients
- \(F\): Radiance calibration coefficient
- \(L_{SD}\): SD spectral radiance
- \(\theta_{EV}\): Solar zenith angle
- \(\theta_{SD}\): Solar incident angle on SD
- \(d\!n\): Corrected digital number (SD or EV)
Challenges in On-orbit Calibration of Reflected Solar Satellite Instruments (1 of 2)

Current challenges in the on-orbit calibration of satellite instruments operating in the reflected solar wavelength regions are largely identical to those experienced in the EOS era

1. **Evolution of solar diffuser materials:**

<table>
<thead>
<tr>
<th>Instrument Operating Wavelength Range</th>
<th>Instrument: SD material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>250-425nm</td>
<td>- BUV & SBUV: roughened aluminum</td>
</tr>
<tr>
<td></td>
<td>- OMI: quartz volume diffuser</td>
</tr>
<tr>
<td></td>
<td>- SNPP OMPS: roughened aluminum</td>
</tr>
<tr>
<td></td>
<td>- JPSS OMPS: quartz volume diffuser</td>
</tr>
<tr>
<td></td>
<td>- TEMPO & GEMS: roughened transmissive quartz</td>
</tr>
<tr>
<td>400-2500nm</td>
<td>- SeaWiFS: YB-71 IITRI thermal control paint</td>
</tr>
<tr>
<td></td>
<td>- MODIS Terra & Aqua: spacegrade Spectralon</td>
</tr>
<tr>
<td></td>
<td>- MISR: spacegrade Spectralon</td>
</tr>
<tr>
<td></td>
<td>- MERIS: spacegrade Spectralon</td>
</tr>
<tr>
<td></td>
<td>- SNPP & JPSS VIIRS: spacegrade Spectralon</td>
</tr>
<tr>
<td></td>
<td>- Landsat-7: YB-71 IITRI paint</td>
</tr>
<tr>
<td></td>
<td>- Landsat-8: spacegrade Spectralon</td>
</tr>
</tbody>
</table>

Roughened Al ➔ Quartz Volume Diffuser

Mie Diffuser (exptl.)

Spacegrade Spectralon
2. Monitoring solar diffuser (and by inference, instrument) degradation:

a. On-orbit monitoring hardware (e.g. SDSM on MODIS & VIIRS)

b. Multiple diffusers with varying solar exposure times (e.g. SNPP OMPS)

OMPS diffuser measurement trends:
- Working diffuser
- Reference diffuser
3. Comparison of SD-based and lunar-based instrument degradation predictions (e.g. SNPP VIIRS)
Effect of Solar Spectral Irradiance on Reflected Solar Instrument Inter-comparisons: MODIS and VIIRS

- Instrument inter-comparisons are critical to the production of long-term satellite data records.
- Differences in comparison results can be due to spatial registration effects, spectral differences, temporal changes in atmosphere and surface between sensor data collects.

VIIRS to MODIS radiance ratios determined using sensor-based Esun models (MODIS and VIIRS) and RSR for their spectrally matched bands.
Effect of Solar Spectral Irradiance on Reflected Solar Instrument Inter-comparisons: MODIS, ALI, ASTER, ETM+, and MASTER

- In addition to the satellite instrument requirement on the use of a solar irradiance spectrum to derive a radiance product in the on-board solar diffuser approach, vicarious calibration methods of instrument inter-comparison all require the use of a solar irradiance spectrum.

\[\text{-EOS era comparison of the WRC and MODTRAN-4 spectral solar irradiance models:} \]

Percent difference between the WRC model originally chosen as the EOS standard and the Chance-Kurucz model embedded in MODTRAN

\[-K.\ Thome, \ et\ al., \ Proc.\ SPIE, \ 4540, \ 260-269 \ (2001) \]
Reflectance and radiance products: SI and traceability, (1 of 3)

-NIST: the U.S. National Metrology Institute (NMI) responsible for developing, maintaining, and disseminating national standards used to realize the SI.

-SI: an internationally accepted coherent system of physical units, derived from the MKSA (meter-kilogram-second-ampere) system, using the meter, kilogram, second, ampere, kelvin, mole, and candela as the basic units (SI units) respectively of the fundamental quantities of length, mass, time, electric current, temperature, amount of substance, and luminous intensity.

-Traceability: The property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties. International Vocabulary of Basic and General Terms in Metrology, VIM 2nd ed., Geneva: International Organization for Standardization, Sec. 6.10 (1993).

Traceability:
(1) establishes a common reference base for measurements
(2) provides a quantitative measure of assessing the agreement of results from different sensors at different times.

Note: It is the responsibility of the instrument calibrator to establish and support their claim of traceability and the responsibility of instrument data users to assess the validity of that claim.
Reflectance and radiance products: SI and traceability
(2 of 3)

- In late 1995 at the request of the EOS MODIS Science Team, the decision was made that the MODIS primary Level 1 project would be reflectance not radiance.

- This decision initially led to a discussion on whether reflectance (i.e. a unitless quantity) was traceable to the SI.

- The BIPM’s 20th Conference Generale des Poids et Mesures, held October 9-12, 1995 adopted the resolution recommending “that those responsible for studies of Earth resources, the environment, human well-being, and related issues ensure that measurements made within their programmes are in terms of well-characterized SI units so that they are reliable in the long term, are comparable world-wide and are linked to other areas of science and technology through the world’s measurement system established and maintained under the Convention du Metre.”

- NML perspective: Reflectance measurements are considered a valid type of SI unit if the (spectral) radiant flux of the reference source (the Sun in this case) is measured simultaneously using absolute detectors. Assuming the Sun stays constant is not acceptable in the view of the CCPR/BIPM.

- At the October 12-14, 2004 CEOS/IVOS Calibration Workshop at ESA/ESTEC, NIST stated “the results of measurements or values of standards do not have to be part of the SI to be “NIST traceable.” In the assignment of values of transmittance, reflectance, or absorptance to filter, windows, mirrors, or other optical components, the underlying measurements of radiance flux can be absolute or relative, since ratios determine the final values.”
Reflectance and radiance products: SI and traceability (3 of 3)

- BRF is a derived product which can be described in terms of SI basic units:

\[
\text{BRF} = \pi \cdot \frac{L}{E}
\]

unitless

\[
\frac{\text{kg}}{m \cdot s^3 \cdot \text{sr}}
\]

- However, the debate on the traceability of unitless SI quantities continues:
Developing climate benchmark instruments and Spectral Solar Irradiance (1 of 2)

MODIS/VIIRS type instruments carry 2% (k=1) reflectance and 5% (k=1) radiance measurement requirements

Climate benchmark instruments such as CLARREO and TRUTHS drive the calibration of reflected solar Earth observing instruments to state-of-the-art levels

<table>
<thead>
<tr>
<th>MODIS reflectance uncertainty budget</th>
<th>MCST 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NIST reference:</td>
<td>0.50%</td>
</tr>
<tr>
<td>2 Characterization of SBRS scattering goniometer:</td>
<td>0.70%</td>
</tr>
<tr>
<td>3 Transfer of NIST BRF scale to MODIS SD reference:</td>
<td>0.50%</td>
</tr>
<tr>
<td>4 MODIS SD characterization:</td>
<td>0.50%</td>
</tr>
<tr>
<td>5 SD spatial non-uniformities:</td>
<td>0.70%</td>
</tr>
<tr>
<td>6 Interpolation angular / spectrally:</td>
<td>0.10%</td>
</tr>
<tr>
<td>7 Pre-launch to on-orbit SD BRDF change:</td>
<td>0.50%</td>
</tr>
<tr>
<td>8 SD screen:</td>
<td>0.50%</td>
</tr>
<tr>
<td>9 SDSM solar 2% attenuation and SDS impact:</td>
<td>0.50%</td>
</tr>
<tr>
<td>10 Solar illumination of the SD surrounds (stray light)</td>
<td>0.30%</td>
</tr>
<tr>
<td>11 Earthshine through the SD door</td>
<td>0.50%</td>
</tr>
<tr>
<td>12 Earthshine through nadir aperture door</td>
<td>0.10%</td>
</tr>
</tbody>
</table>

RSS 1.69%
RSS (non-ocean without SDS) 1.61%

1. CLARREO Radiometric Specifications:
 - Spectral range: 320-2300 nm
 - Radiometric calibration uncertainty ≤ 0.3% in reflectance (k=2)
 - Radiance calculated from reflectance using SSI spectrum with uncertainty 0.2% (k=1)

2. TRUTHS Radiometric Specifications:
 - Spectral range: 320-2450 nm
 - Earth spectral radiance measurement accuracy of <0.3%
 - SSI measurement accuracy of ≤ 0.1%
Developing climate benchmark instruments and Spectral Solar Irradiance (2 of 2)

Comparison of two methodologies for calibrating satellite instruments in the visible and near-infrared

ROBERT A. BARNES, STEVEN W. BROWN, KEITH R. LYKKE, BRUCE GUENTHER, JAMES J. BUTLER, THOMAS SCHWARTING, KEVIN TURPIE, DAVID MOYER, FRANK DELUCCIA, and CHRISTOPHER MOELLER

1Science Applications International Corporation, Beltsville, MD 20705
2National Institute of Standards and Technology, Gaithersburg, MD 20899
3Stellar Solutions, Inc., Chantilly, VA 20151
4National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD 20771
5Science Systems and Applications, Inc., Lanham, MD 20706
6Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD 21228
7The Aerospace Corporation, El Segundo, CA, 90245
8University of Wisconsin, Madison, WI 53706

*Corresponding author: swbrown@nist.gov

From the abstract:

“More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.”

Quasi-cw tunable laser systems in the US: NIST, NASA GSFC (2), U. of Colorado LASP

Accepted for publication in Applied Optics
In Conclusion:

- Consistency in satellite instrument remote sensing data sets and products, requires a standard, high quality solar irradiance spectrum

Applications include:
- Production of radiance products from satellite instruments (i.e. radiance based calibration methods)
- Production of satellite instrument radiance products from reflectance products
- Ground-based and airborne vicarious calibration methods
- Inter-comparisons of satellite instrument radiance measurements
- Production of long-term remote sensing data sets from multiple instruments

- The adoption of the Thullier spectrum (G. Thuillier, et al. Solar Physics 214(1): 1-22 (2003)) by the 17th CEOS Plenary in November 2003 as the standard solar spectrum was a necessary and important first step in establishing inter-instrument product consistency

- Improvements in the accuracy and consistency (i.e. full validation) of solar irradiance spectra and new instrument calibration/characterization approaches are being strongly driven by climate science requirements
The 2014 SORCE Spectral Solar Irradiance Review

-The 2013 Senior Review of Earth Science Operating Missions provided programmatic direction for the SORCE mission for FY 2014-2017

-For SORCE, the review panel recommended an independent review of the SSI methods and results to ensure data quality and to resolve discrepancies with other observations and model results.

-In response to the above recommendation, a SORCE SSI review was held at LASP from September 16 to 18, 2014

-Review panel members included
 -Jim Butler (NASA/GSFC) panel co-chair
 -Joe Rice (NIST) panel co-chair
 -Kurt Thome (NASA/GSFC)
 -Carol Johnson (NIST)
 -Jeff Morrill (NRL)
 -George Mount (Washington State U.)

-The review focused on SOLSTICE and SIM SSI measurements and their long-term inter-solar cycle variability, instrument calibration approaches, algorithms, techniques for determining instrument performance degradation and resulting impacts on measurement uncertainty.
General recommendations were made by the panel in 4 areas:

1) Exploitation of SSI data sets from other instruments and models
 • Pursue obtaining additional SSI data sets for comparison purposes (e.g. OMI on NASA Aura, SOLSPEC on ISS, OMPS on SNPP)

2) On-orbit instrument hardware/performance degradation
 • Perform a ray trace study invoking free parameters to examine the effect of on-orbit degradation on SOLSTICE optics while examining impacts on the instrument’s FOV profiles
 • Evaluate the applicability/assumptions of the SIM instrument physical model in the determination of on-orbit instrument degradation (e.g. prism opacity as a function of λ, deposition thickness vs. t, and solar exposure t)

3) Measurement uncertainty analyses
 • Perform rigorous error analyses (i.e. all error sources clearly identified and quantified) for both SIM and SOLSTICE
 - Panel recommended a Monte Carlo analysis approach

4) Conduct an independent review of the TSIS SIM ISS on-orbit instrument operational plan

- A total of 20 additional (detailed) recommendations (with recommendees) were identified
Questions?