Sun-Climate Symposium: Session 4, Presentation 12

<u>A Different View of Solar Cycle Spectral Variations</u> <u>Modeling Total Energy during</u> <u>Six-Month Intervals</u>

tom.woods@lasp.colorado.edu

SORCE SOLSTICE V13: Marty Snow SORCE SIM V21: Jerry Harder TIMED SEE V11: Frank Eparvier SFO Proxies: Gary Chapman and Angie Cookson

PART 1

MOTIVATION TO MODEL 6-MONTH INTERVALS

 Different analysis technique could shed some light on the debate about the SORCE SIM results of out-of-phase variations for visible and near infrared and larger ultraviolet variations (Harder *et al., GRL*, 2009)

 Modeling longer term (e.g. 11-year solar cycle) variations can be sensitive to instrument degradation trending.

- Modeling short-term (e.g. 27-day solar rotation) needs both positive and negative components for the TSI and NUV-Vis-NIR SSI
- Short-term UV variability only has **positive** component

Energy == Integration of Irradiance above background over time UV Energy: always positive TSI Energy: positive or negative ?

- The lifetime of solar active regions is about 6 months.
 e.g. Preminger & Walton, *JGR*, 2005
- Woods *et al*. (*Solar Physics*, 2015) explore the energy variability over six-month intervals

Outburst Behavior for New Active Region

Ultraviolet (UV) has large peak followed by weaker peaks for about 5 months.

Total Solar Irradiance (TSI) has dip for new sunspot and then peaks like the UV.

PART 2

MODEL PARAMETERS

Irradiance, Variability, Energy Definitions

Parameter	Equation	Units
Irradiance	Ι	TSI, Band: W/m ² SSI: W/m ² /nm
Variability	$V = I - I_{\min}$	TSI, Band: W/m ² SSI: W/m ² /nm
Relative Variability	$V_R = \frac{I - I_{\min}}{I_{\min}} = \frac{I}{I_{\min}} - 1$	%
Energy (outburst, 6 months)	$E = \overset{t_e}{\overset{t_o}{0}} V dt$	TSI, Band: J/m ² SSI: J/m ² /nm
Relative Energy	$E_R = \left(\grave{0} V_R dt \right) / t_{days}$	%

2-Component Solar Variability Model

- Premise: spectral variability for one active region (outburst) can be related to longer term (solar cycle) variations that involves many active regions.
 - Decomposition of solar images indicate that active regions are the primary source of irradiance variability
 Skumanich *et al.*, 1984; Lean *et al.*, 1997; Fontenla *et al.*, 1999; Worden *et al.*, 1998, 1999

9

Important Change from prior studies: energy variability (E, E_R) is examined instead of irradiance variability (V, V_R)

SFO Proxies for Modeling SSI Variations

- San Fernando Observatory (SFO) processes images of the Sun at 672 nm for Sunspot Deficit and at 393.4 nm (Ca II K) for Facular Excess
 - http://www.csun.edu/sfo/sfosolar.html

Parameters for Energy Variability Model (EVM)

Woods et al., Solar Physics, 2015

- Energy (E) is the irradiance (I) integrated over 6-months
- Average energy variability is the average of the energy results for each 6-month period every 2-months over the mission.

$$\underline{\mathbf{E} = \text{Energy:}} \\
 E_R = \left(\overset{\circ}{\mathbf{0}} V_R \, dt \right) / t_{days} \qquad V_R = \left(I - I_{\min} \right) / I_{\min} \\
 \underline{2 \text{ Components:}} \quad V_R = C_O + C_E P_E + C_D P_D \\
 E_R = \left(\overset{\circ}{\mathbf{0}} C_E P_E \, dt + \overset{\circ}{\mathbf{0}} C_D P_D \, dt \right) / t_{days}$$

 C_{O} , C_{E} , and C_{D} are fit using **SORCE SSI** measurements over 6-month periods.

- San Fernando Observatory (SFO)
 facular excess and sunspot deficit
 proxies are the P_E and P_D in the model.
 - TSI Excess (TSI Sunspot Deficit) is used for 300-1600 nm instead of Ca II K facular excess

Example Modeling of the 2005 Outburst

- UV variations, such as **H I Lyman-** α , only need the Facular Excess
- NUV-Visible-NIR and **TSI** need both **Sunspot Deficit** and Facular Excess

PART 3

VARIABILITY RESULTS

Excess (positive) Component Dominates in UV

- The Excess (positive, in-phase) component is the only component needed for wavelengths < 250 nm.
- The Deficit (negative, out-of-phase) component is zero for 0-250 nm.

Figure 4a in Woods et al. (Solar Phys, 2015)

Deficit Component Starts to Show at 290 nm

- The Excess (positive, in-phase) component still dominates up to 400 nm. ٠
 - Excess contributions are shown for NOAA SBUV, UARS SUSIM, SORCE SOLSTICE, and SORCE SIM
- The Deficit (negative, out-of-phase) component appears > 290 nm.
 - Only the SIM deficit contribution is shown for clarity. The deficit is small contribution.

Figure 7b in Woods et al. (Solar Phys, 2015)

UARS SUSIM provides validation for 145-235 nm

• Day-to-day noise in the SUSIM is too high for precise model fits, except in the 145-235 nm range.

Deficit (negative) is very important in Vis-NIR

- Panel A shows the total energy variation
 - Excess dominates when total is positive (in-phase with solar cycle)
 - Deficit dominates when total is negative (out-ofphase with solar cycle)
- Panel B shows the two components (excess and deficit). Add these two together for the total shown in Panel A.

Figures 9a and 9b in Woods et al. (Solar Phys, 2015)

Comparison of Energy Variability Model Results Woods *et al., Solar Physics,* 2015

Energy Model Comparison to TSI

- Energy Model TSI = SSI integrated 0-1600 nm + 154.6 W/m² offset
- Standard deviation between Energy Model TSI and PMOD is 116 ppm
- Energy Model TSI suggests larger decrease from 1996 to 2008 than the decrease in the PMOD composite TSI

Energy Model 1996 to 2008

Conclusions

- The energy variability model results indicate very similar spectral variability from three different solar cycles and from different instruments.
- The deficit contribution is most important for the Vis-NIR (400-1600 nm).
- These results provide additional evidence for negative (out-of-phase) variability in the NIR 1400-1600 nm.

- Out-of-phase behavior is when Deficit is larger than Excess

- Assuming most of the variability is from active region evolution, then these 6-month energy variability results could be indicator for solar cycle variability.
- Primary Reference: Woods et al., Solar Physics, 2015
 http://link.springer.com/article/10.1007%2Fs11207-015-0766-0

BACKUP SLIDES

Outburst -> Impulse Response Function

- Outburst is referred to as the Energy of the irradiance variation from a single active region
- Preminger and Walton (2005) modeled TSI variations with impulse response function (IRF)

Model Constant could indicate that a 3rd variability component is needed and/or instrument trend

Average Energy Variability = average excluding solar cycle minimum

Model Constant could indicate that a 3rd variability component is needed and/or instrument trend

• Example model Constant time series for SORCE SOLSTICE and SORCE SIM

More Out-of-Phase Variations is possible at different times during solar cycle

 2-sigma low Excess contribution combined with 2-sigma high Deficit contribution would indicate out-of-phase (negative) variability near 400 nm and for 1000-1600 nm

Energy Variability Model Uncertainty

• Variability uncertainty is about 30%

- e.g., If solar cycle variability is 10%, then uncertainty is 30% * 10% = 3%

• SIM noise in 300-400 nm and in NIR ranges limit model uncertainty

Energy Variability compares well to Solar Cycle Variability in the UV range

- 180-day averages used for solar cycle variability
- SC-23: Aug 2002 Sep 2008 SC-24: Nov 2011 Sep 2008

Figure 4c in Woods et al. (Solar Phys, 2015)

Comparison of Energy Variability Model

- 180-day averages used for solar cycle variability using SORCE and NOAA-11 SBUV data
- Good agreement of solar cycle variability for < 290 nm, but larger differences in 290-400 nm range
 - SIM differences are smaller than the NOAA differences

Comparison of Energy Variability Model

- 180-day averages used for solar cycle variability using SORCE SIM data
- Large differences in Vis-NIR 500-1600 nm range

Fontenla's Model prediction for SIM Variability

 Solar Radiation Physical Model (SRPM) has prediction for negative (out-of-phase) variation if brightness temperature is >5770 K [lower photosphere] (Harder *et al., GRL*, 2009)

SFO Model – SEE Correlation Results

• SEE's low signal in 170-190 nm range causes for poorer correlation

SFO Model – SORCE Correlation Results

- SORCE SIM's low signal in 300-400 nm range causes poorer correlation.
- Deficit contribution is not important for shorter than 290 nm.

- SORCE SIM's diode gain correction with temperature affects the 800-1000 nm range the most.
- Deficit contribution is important over full 400-1600 nm range.

SFO Model – SUSIM Correlation Results

 UARS SUSIM has high day-to-day noise in 115-145 nm and 235-410 nm ranges, thus poorer correlation in those ranges.

> **UARS SUSIM** 1.0 0.5 Correlation 0.0 Multi Corr Excess Corr -0.5 Deficit Corr -1.0 150 200 250 300 350 400 Wavelength (nm)

> > High Noise

for SUSIM

High Noise

for SUSIM

36