The RAVAN CubeSat Mission: Progress toward a new measurement of Earth outgoing radiation

<u>William H. Swartz</u> (*JHU/Applied Physics Lab*) Lars P. Dyrud,² Steven R. Lorentz,³ Dong L. Wu,⁴ Warren J. Wiscombe,⁴ and Stergios J. Papadakis¹ ¹*JHU/Applied Physics Laboratory,* ²*OmniEarth,* ³*L-1 Standards and Technology,* ⁴*NASA/Goddard Space Flight Center*

also Philip M. Huang,¹ Edward L. Reynolds,¹ Allan Smith,⁴ and David M. Deglau¹

Funding: NASA Earth Science Technology Office

(ERI = Earth Radiation Imbalance)

ERI is most important quantity for climate change

The problem is the absolute value of ERI

Argo network informs our view of OHC

APL

What we need is an "Argo" in space for TOR

- Accurate, un-tuned measurements of TOR
- Global, simultaneous, 24/7 coverage
- Diurnal sampling of rapidly varying phenomena
 - Clouds
 - Plants
 - Ozone/photochemistry
 - Aerosols

The maturation of smallsat/hosted payload and constellation technology provides an opportunity for taking a big step forward in Earth radiation budget science.

RAVAN is a pathfinder for an ERB constellation

- RAVAN: Radiometer Assessment using Vertically Aligned Nanotubes
- CubeSat (a single CubeSat) mission funded through NASA ESTO's InVEST program
- Combines
 - Compact, low-cost radiometer that is absolutely accurate to NIST-traceable standards (L-1/APL)
 - VACNT radiometer absorber (APL)
 - 3U CubeSat bus (Blue Canyon)
 Process engineering analysis (Draper)
- Launch in 2016(?)
- Is a technology demonstration

CubeSats are apparently impossible to define

ANDSAT-8	Facsar-2	FROBA-V	
Large	Small (Mini)	Micro	Nano
> 500 kg	<500 kg	<100 kg	<10 kg

CubeSats launched each year, by mission type [*M. Swartwout* 120 *database*]

Classically based on 10 cm x 10 cm x 10 cm "Unit" (U)

Why a CubeSat experiment?

- CubeSats provide a reasonably fast, inexpensive means to test new hardware and techniques on orbit.
- Increasingly used as a platform for science observations.

RAVAN Technology objective #1: VACNT

 Demonstrate the use of a vertically aligned carbon nanotube (VACNT) absorber within a radiometer for high-accuracy on-orbit measurements

- Very black, and spectrally flat from UV to far-IR
- Fast(er) response time
- Very low mass

RAVAN CubeSat Mission • bill.swartz@jhuapl.edu • Sun–Climate Symposium • 11/12/15

VACNTs grown at APL

- Silicon wafer is covered with catalyst layer
- Chemical vapor deposition using ethylene as the carbon source is used to produce the VACNT growth
- Post-growth modification (vapor modifications, plasma etching)
- IR reflectivity measured to $\sim 16 \ \mu m$ at APL
- Characterization (likely at NIST) to 100 µm
- Survive launch simulation (vibration test)

Technology objective #2: Gallium blackbody

Demonstrate the use of a gallium closed-cell source for calibration transfer

Payload includes four radiometer heads

- Pair of two-channel differential bolometric sensors
 - Pair #1: VACNT absorber
 - Pair #2: Cavity absorber
- Total channel(s)
 - UV to 200 µm
- Shortwave channel(s)
 - Sapphire dome(s)
 - UV to ~5.5 µm
- Fixed-point gallium BB in cover (2)
- WFOV: ~130° (whole Earth disk)
- SMaP (payload only)
 - Size (volume): <1 U (10×10×10 cm³)
 - Mass: <1 kg
 - Power: ~1.9 W (average)

VACNT radiometers smaller and faster

Earth disk subtends RAVAN FoV

RAVAN capability objectives

- Provide better than 0.3 W/m² (climate accuracy) absolute Earth outgoing radiation measurements
- Establish an accuracy standard that remains stable over time on orbit
- Provide radiometer units that are manufacturable and calibratable at low cost so that the required constellations remain affordable

Getting to climate accuracy

- Ground calibration (at L-1)
 - Component-level and end-to-end calibrations
 - Tied directly to NIST
 - Operational level cal in TVAC chamber
 - Laser-based measurements (SW channel)
 - Fixed-point gallium BB (Total channel)
 - 1σ 0.005K (0.03 W/m²)
- On-orbit calibration: Ga blackbody emitter
 - Transfer standard for Total channels
 - Degradation monitor of both primary and secondary Total channels
 - Ga BB coupled with solar and space looks gives offset and degradation monitoring
- Modes of operation/calibration (next slide)

Multiple modes calibrate instrument on-orbit

RAVAN will fly on a 3U CubeSat

- Using Blue Canyon Technologies XB1 3U bus
 - Integrated XACT attitude determination and control system (several upcoming launches starting in fall 2015)
 - GN&C for 3-axis control, GPS receiver, and stellar navigation
 - Electrical power subsystem, including batteries and solar arrays
 - Spacecraft command and data handling
 - RF communications
- Radiometer payload occupies less than 1U volume (<10×10×10 cm³)
- Sensor is typically nadir-pointing

Mission parameters to achieve objectives

- Orbit
 - Provided by NASA's CubeSat Launch Initiative
 - Desire high (>550 km), high-inclination, not sunsync orbit...or sun-sync similar to CERES
 - Waiting in queue; Possible launch date: 2016
- Mission operations
 - 1 month check-out
 - 4 months minimum operation for demonstration (achieves technology and science goals)
 - >1 year operation desired (allows for more TOR data for comparison with CERES)

Radiometer Assessment Using Vertically Aligned Nanotubes

- RAVAN demonstrates key technologies (VACNT absorber, Ga blackbody) for possible ERB mission
- Flying on a 3U CubeSat
- Launch 2016(?)

Funding: NASA Earth Science Technology Office

RAVAN CubeSat Mission • bill.swartz@jhuapl.edu • Sun–Climate Symposium • 11/12/15