Observations of Turbulence and Large Electric Fields associated with Magnetic Reconnection in Earth’s Magnetotail

Emma Stohlman1,2, N. Ahmadi1, F. Wilder1, R. Ergun1
1 Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
2 Department of Physics, Illinois Institute of Technology, Chicago, Illinois, USA

SUMMARY

Magnetic trapping is a driving factor of electron acceleration to energies of 100 keV+ during reconnection events in Earth’s magnetotail

- Reconnection events are associated with turbulence and electrons accelerated to high energies
- Electrons accelerated to high energies spent enough time in magnetic holes during reconnection events to indicate a strong connection between turbulence and acceleration

BACKGROUND

- Reconnections of magnetic field lines in Earth’s magnetotail can result in the release of magnetic flux and plasma in both Earthward and tailward flows
- Observation of the plasma sheet using MMS satellites show large-amplitude electric field pulse, plasma turbulence, and electrons accelerated to energies of 100 keV+
- High resolution MMS measurements are used to examine turbulent regions in detail
- Measurements indicate magnetic trapping is a contributing factor in electron acceleration

ACCELERATION EVENTS

- MMS data was used to identify periods of electron acceleration during reconnection events with associated bulk flow reversal and high amplitude electric fields and turbulent magnetic fields
- High resolution MMS measurements were used to calculate the work done on particles by electric fields (J dot E)
- The Pitch Angle Distribution (PAD) of electron acceleration events was calculated and graphed to identify magnetic holes and trapping

MAGNETIC TRAPPING

- High resolution MMS data was used to calculate the speed of magnetic holes, particle gyroradii, inertial length, and gyrofrequencies

CONCLUSION

- Magnetic trapping as a result of turbulence is a driving factor of electron acceleration to high energies
- The plasma parameters and speed of the magnetic holes indicates electrons can get trapped and spend sufficient time in magnetic holes for acceleration
- Future studies will focus on identifying specific mechanisms behind acceleration

Contact email: estohlman@hawk.iit.edu

This research was supported by the National Science Foundation REU program, Award #1659878.