GHOTI: GOES High-cadence Operational Total Irradiance
Using the SPS on EXIS on GOES-Rs as a High-Cadence TSI Proxy
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EXIS (Extreme ultraviolet and X-ray Irradiance Sensors) detectors on the GOES-R spacecraft (GOES-16, 17, and 18) use quad-diode (QD)
Sun Positioning Sensors (SPS) to maintain precision pointing. The 4 Hz QD signal is high-precision, and we use this signal as a high-cadence
proxy for Total Solar Irradiance, Tg, (t). The QD signal must be calibrated for spacecraft velocity (1AU), instrument temperature, and diode
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degradation with usage. Ending our 1st year of this 3-year project, we report cahbrauon progress and outline our science goals.
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What is the SPS?

The Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS) on the
GOES-R Series satellites (GOES-R/S/T/U) are used monitor high-
energy solar irradiance. GOES-R (GOES-16), GOES-S (GOES-17), and
GOES-T (GOES-18) are currently operating.

EXIS is described as having two detectors:
1) the Extreme Ultraviolet Sensor (EUVS) and
2) the X-Ray Sensor (XRS).

However, there is a third sensor, the Sun-Positioning Sensor (SPS), on
the GOES-R satellites that we are attempting to use as a broadband

GOES16 SPS as a TSI PROXY

GOES 16 SPS TSI PROXY
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Solar monitor to develop a proxy for measuring high-cadence Total - SPS TSI Proxy
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1AU Correction

The GOES-R satellites are in geosynchronous orbits, and thus need a
1AU correction (1AUCORR) to correct for orbital distance from the Sun.

This correction shows both annual and daily variations. Our orbital
distance correction is created by:

SPS filter throughput, and diode efficiency, decrease with time. Left figure shows the GOES16 SPS signal after 1AUCORR - : : . i
and TEMPCORR. We use TSIS-1 TIM Total Solar Irradiance (TSI) 6h measurements to model this degradation.The right e E)BquUslpE))rlggfgfhf(PS TS)I -IP-LOGXZ(;ISaEI\?:r?adbri}ﬁrecgil'?eci};é:eeg;%s tgeee-lr-lselgt:]e-rLl\gdLilcg%Tt:]eeTDs? igcreases)’ gt:]rrTSI-
figure shows the GOES16 SPS degradation correction (DEGCORR) in units of SPS DN/(W/m2) - Y J '

' proxy can also be used to fill in temporal gaps in TSIS-1 TIM measurements.
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FUtU re VVO rk: We are starting the 2nd year of a 3-year project, with our 1st year devoted to SPS signal analysis and calibration.
Our year 2 goals (in addition to enhancing our SPS TSI Proxy calibrations) are:

1) Use GOES-17 to assist in the GOES-16 SPS calibration. Modeling the solar spectrum: The NRLSSI and NRLTSI models use linear combinations of facular
2) Expand our TSI analysis to the GOES-18 spacecraft brightening, AT, (t), and sunspot darkening, AT (t), relative to a Quiet Sun reference spectrum (T,

3) Combine our SPS TSI Proxy with the Magnesium Il index (EUVS-C), .Coddington et al. 2016, Coddington and Lean 2015). We can infer the sunspot darkening from TSI(t)
(A1) | TSI(t) = Ty + ATg(t) + ATs(t)

ATr(t) = ap + bpX[F(t) — Fy] ; Fp = Facular Brightening at Solar Minimum
ATs(t) = as + bsX[S(t) — Sg] ; Sp = Sunspot Darkening at Solar Minimum

1) Download 2-line element files (tle) from https://www.space-track.org/
2) Using IDL ICY SPICE (NO066) to create Spice Kernel Files (spk)

3) Apply the 1AUCORR to the quad-diode signal, measured in current,
but expressed as DN (Data Numbers): DN 1AU = DN * (R/1AU)"2

GOES16 SPS DN vs. Time
I Y L R B B B
— GOES16 : RAW SPS signal —— GOES16 w/ 1AUCORR

1.50

to create an additional high-cadence (3s) UV-IR spectrum, | -

=
N
a

Total Solar Irraduancc

e

z L

g T T T A SR The NRLSSI/2 (Coddington et al. 2016)

g L0 g 7,( e L LS model uses a linear combination of the S(t) is the sunspot darkening, F(t) is the facular brightening, and for TSI, we use our GHOTI TSI-
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