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Total Solar Irradiance Data Record
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Total Solar Irradiance Composite
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Justification for SSI measurement contlnwty

Science Justification: extending the important e, i e
Units Wm2 TOA TOA A
long-term climate record of Solar Spectral Irradiance R
(S S I ) (3?0432) fgl (1)09 ' (2?632?2)
« The SSI climate record extends back to 2003 (SORCE) and is critical > ' g
for NASA's Sun-climate science as highlighted in the 2017 Earth \ vV~
Science Decadal Survey. i : - e J' “:“ J‘
solar absor - latent heat b . r use
» SSI measurements enable in-depth research of the Sun’s influence on X -- g
Earth’s ozone layer, atmospheric circulation, clouds, and ecosystems. | = 112?89) 7 —f=", |
« The SSI climate record provides the spectral variability that is important e oy 002 — e

~—B

for detailed understanding on how the Earth’s atmosphere and surface © 0. solar absorbed  evapo- sensble  themnal themnal

0.2,1.0) surface ration heat up surface down surface

ScABATISE REEGA Tt ordeglidation, o o ds to continue to operate until at least October 2025
In order to have a one-year overlap with TSIS-2 (Aug 2024 Launch readiness)

~ * The continuity of both the TSI and SSI climate records depends critically on having overlapping observations.
4 // _ The TSIS-2 mission, with the same instruments as those on TSIS-1, is planned to launch no early than
7 y August 2024 and with commissioning being completed in October 2024.
-+ Aone-year overlap between TSIS-1 and TSIS-2 is required to ensure the continuity of the accurate SSI data
records, so TSIS-1 operations need to continue to at least October 2025.
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TSI & SSI focused missions & opportunities moving forward
Over 4 decades of LASP/GSFC solar irradiance measurement continuity...

New Tech Demo (ESTO)

&I51S

Total and Spectral % LASP
Solar Irradiance Sensor -

2013-2017 (TSI)

- What can we learn from past and present solar missions?
- Are the methods of observation adequate and are the results accurate enough?

Nhat are the observations to be continued? What are the missing ones?

/hat is the best strategy for ensuring the proper observation of essential observables (dedicated missions,
osted payloads, CubeSats)?
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UV SSI Data Record

Integrated Irradiance 240-260nm
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Solar Irradiance Measurement Continuity (SORCE and beyond)

BOM 2003

SORCE (TSI & SSI)

EOM

SIM (SSI)

2017 Earth Science Decadal Survey
THRIVING orour (Prioritized science objectives and

CHANGING PLANET
3 challenges):

“For the next decade and beyond, the |

measurement imperatives include ...

an emphasis on continuity so that i N

gaps in observations that would + © C5IM-FD & CTIM-FD

\ T |

; . . NASA ESTO TSIS-2 (TSI & SSI) Ext.

preCIUde Or Impalr SCIentIfIC Tech. Demo Missions I T
(6U CubeSats) O

understanding and societal benefits
United Nations are aVOided_ ”

Framework Convention on
Climate Change KRN SIS S SR T T Ty

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

We are here 08/24

al: “Acquire SSI and TSI time series of measurements of sufficient length, consistency, and continuity to determine
ate vari iabili ty an d Chan g e i *Climate Data Records from Environmental Satellites: Interim Report (2004)
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SORCE/TCTE/TSIS-1/CSIM Accomplishments

The 17-year SORCE mission ended on Feb. 25, 2020.
- Final data products are archived at GSFC.

- 2 years of overlap with TSIS-1 (Overlap analysis in progress — several NASA SIST efforts)
- SORCE TIM established a new TSI of 1361 W m™.
TCTE ended in June 2019.

- Over 5 years overlap with SORCE, over a year overlap with TSIS-1.
TSIS-1 normal operations on ISS started Jan 2018 (TSI) March 2018 (SSI)
TSIS-1 SIM reduces uncertainties from SORCE SIM by ~ one order of magnitude.

- TSIS-1 SIM accuracy uncertainty < 0.25% (Vis-IR). <0.5% (UV) — tied to NIST standards in irradiance
- Integrated SIM SSI (+ inferred long IR) agrees with TIM TSI to within 1 W m™

- Established absolute scale of HSRS internationally recognized SSI reference spectrum (CEOS adoption March 2022) |
TSIS-1 TIM validates the SORCE and TCTE calibration scales.

- SORCE TIM reduced uncertainties from prior TSI measurements by approximately one order of magnitude.
- TSIS-1 TIM uncertainty ~ 0.012% (launch), ~0.016% (present).

_CSIM Flight Demonstration first on-orbit SSI absolute validation (<1% uncertainty)

- Technology demonstration for next-generation absolute detectors

- 3 year mission (Jan 2019 — Feb 2022), contributed to extending IR of HSRS reference spectrum

- TSIS-2 TIM & SIM currently in final instrument build & calibration phase
- Scheduled launch readiness Aug. 2024, Free-flyer satellite

22 Sun-Cli Symposium, May . . T . .
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TSIS-2:Extending the TSI and SSI Data Record

@ =LASP

Total and Spectral solar Irradiance Sensor — 2
* NASA GSFC Managed Mission (NASA PM: Susan Breon)
« LASP PI: Erik Richard; LASP PM: David Gathright

* Rebuild of TSIS-1 SIM and TIM instruments, flying on a dedicated spacecraft
» Payload: LASP (SIM, TIM)

« Spacecraft Bus: General Atomics

Total
» Mission Operations: General Atomics Irradiance
: Monitor
« Payload Operations: LASP
« Science Data Processing: LASP
7807 _ Payload sk 3 delivery
i | :\;Irad_'fnce — TSIS-2 launch readiness date: Aug 2024
4 - onitor ‘
o \al ASP N — Next milestone review: Mission KDP-C, May "22
D SO — TIM and SIM are in final assembly & calibration
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TSIS-1 SSI Scientific Impacts

022 Sun-Climate Symposium, May

"17, 2022, Madison, Wisconsin USA Overview of NASA Sun-Climate Missions and Projects Richard 10



TSIS-1 HSRS Formally Recognized

March 2022: The Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV)
recommended the TSIS-1 HSRS as the new solar irradiance reference spectrum [https://calvalportal.ceos.org/events/].

CE& S Cal/Val Portal

News & Events & search.. . Evi.nvg 'rv

Events Publisher Home

y News & Events
TSIS-1 HSRS solar irradiance reference spectrum TSIS-1 HSRS Reference
SRIX4VEG 1st WS

TSIS-1 HSRS solar irradiance reference spectrum I ACIX III and CMIX II 1st WS
CEOS SAR Cal/Val WS 2021
. CEOS WGCV recommends the Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) Hybrid Solar Reference Spectrum g TR0 WS ZO}?
(HSRS) as the new solar irradiance reference spectrum. This statement has been agreed during the latest WGCV#50 Jerneanc DEOions Wik

Plenary Meeting.

Details for TSIS-1 HSRS are available at: https://lasp.colorado.edu/lisird/data/tsis1 hsrs
TSIS-1 Hybrid Solar Reference Spectrum (HSRS)

— HSRS Variant at 0.1 nm resolution
— HSRS Variant at 1 nm resolution

O. M. Coddington, E. C. Richard, D. Harber, P. Pilewskie, T. N. Woods, K. Chance, X. Liu,
and K. Sun, “The TSIS-1 Hybrid Solar Reference Spectrum”, Geophys. Res. Lett., doi:

10.1029/2020GL091709, (2021).

1000
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https://doi.org/10.1029/2020GL091709

Applications Using the TSIS-1 HSRS

Aerosol Optical Depth Retrievals
*Natalia Kouremeti et al 2022 Metrologia in press

Radiative Transfer Modeling
*Momoi, M. et al. Rapid, accurate computation of narrow-band sky radiance in the 940 nm gas absorption region using the correlated
k-distribution method for sun-photometer observations. Prog Earth Planet Sci 9, 10 (2022).

Ozone Retrievals

*Egli, L., et al., Traceable total ozone column retrievals from direct solar spectral irradiance measurements in the ultraviolet, Atmos. Meas.
Tech., 15, 1917-1930, 2022.

*Bak, J. et al., Impact of Using a New High-Resolution Solar Reference Spectrum on OMI Ozone Profile Retrievals. Remote Sens. 2022.

Airborne/Satellite Calibration & Inter-Calibration

C. J. Bruegge et al., "Vicarious Calibration of eMAS, AirMSPI, and AVIRIS Sensors During FIREX-AQ," in IEEE Transactions on Geoscience and
Remote Sensing, vol. 59, no. 12, pp. 10286-10297, Dec. 2021.

*Bhatt, R et al., Quantifying the Impact of Solar Spectra on the Inter-Calibration of Satellite Instruments. Remote Sens. 2021, 13, 1438.

*Carol J. Bruegge et al., "Multi-Angle Imager for Aerosols (MAIA) spectral and radiometric calibration," Proc. SPIE 11829, Earth Observing
Systems XXVI, 118290T (2 August 2021).

*Amit Angal et al., "Intercalibration of the reflective solar bands of MODIS and MISR instruments on the Terra platform," J. Appl. Rem. Sens.
16(2) 027501 (15 April 2022).

Lunar Measurements & L unar Calibration

*T. C. Stone, "Acquisition of Moon Measurements by Earth Orbiting Sensors for Lunar Calibration," in IEEE Transactions on Geoscience and
Remote Sensing, vol. 60, pp. 1-6, 2022.

% Laboratory Atomic Spectra Analysis
* S.J. Bromley et al 2021 Planet. Sci. J. 2 228
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Solar Irradiance Spectrum has Significant Impacts on Arctic Sea Ice
Fraction and Surface Temperature

Arctic

(a) Diff in Sea Ice Fraction
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Antarctic
(b) Diff in Sea Ice Fraction

(d) Diff in Surface Temperature
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NCAR CESM2 Simulations

Method:

The recent TSIS-1 mission has provided
more accurate SSI observations than
before. The SSI difference in a given VIS
or NIR band can be as large as 4 W m™.

Impact:

The results show that, due to different
spectral reflectance of sea ice and water
surfaces in the VIS and NIR, the set of
simulation with more SSI in the VIS has
less solar absorption by the high-latitude
surfaces, ending up with colder polar
surface temperature and larger sea ice
coverage.

(Jing, et al., Journal of Climate, 2021)
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TSIS-1 Long-term SSI
(from Solar Minimum into SC 25)
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Integrated SIM to TIM TSI Comparison
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Measured vs. Model SSI Comparisons
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Short-term spectral variability: Measured vs. Modeled

Onset of Solar Cycle 25

Relative Change between 2020-12-26 (max) and 2021-01-10 (min) 26 Dec 2020 1 0 Jan 2021

— TSIS-1 SIM
— NRLSSI2

(max/min-1) x 100 [%)]

1000 2400 NASA SDO AIA (1700)

Wavelength [nm]
5 Relative Change between 2021-09-07 (max) and 2021-09-01 (min) 01 Sep 2021 07 Sep 2021

— TSIS-1 SIM p—
— NRLSSI2 .

(max/min-1) x 100 [%)]

1000 NASA SDO AIA (1700
Wavelength [nm] (70
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Long-term spectral variability (4 years): Measured vs. CDR

Note: CDR (Climate Data Record) is NRLSSI2
model based on SORCE reference
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New Technology Infusion
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LASP-NIST ESTO Advanced Component Technologies (ACT) Developments
"Key Next-Generation Technologies”

CTIM Bolometer

e Silicon-Based Bolometers
 Developed/fabricated by NIST Boulder CSIM Bolometer

* Vertically aligned carbon nanotubes
(Typical absorptance >99.9%)

* Integrated heater

* Deep Reactive-lon Etched
Apertures CSIM Precision Aperture IMPrec

* Fabricated by NIST Boulder

- * Fabricated to extremely high tolerances
/ ,v, ry low area uncertainties, 10's ppm)

A ery small CTE, High thermal stability

150 UM
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pact Spectral lrr

" SS| Mea

CSIM is a compact solar spectral irradiance monitor that is a cost-effective
and low risk alternative instrument designed for considerable implementation
flexibility, high calibration accuracy and performance stability for obtaining
high-priority Earth Science measurements.

Goal: Achieve flight-qualified instrument for LEO operational
_demonstration and TSIS validatio aunched Dec 2018, EOM Feb 2022)

P
g 2 e e Ee e s s ————

Optical Bench
Assembly ~——  UHF S-Band Antenna

Antenna

Blue Canyon
Technology

CubeSat “Bus”
Precision
Entrance CSIM

Aperture Electronics
Box
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TSIS — CSIM Absolute Solar Spectrum

Solar Spectral Irradiance (SSI) measurements
by TSIS-1 SIM and CSIM during solar minimum
period resulted in a newly established SSI
reference spectrum for Earth Science

applications

CSIM 6U

||l

— TSIS-1 SIM
—— CSIM Photediodes
—— CSIMESR

SSI W m? nm_1]

|
1000

Wavelength [nm]
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15

| |
00 2000 2500

T T

[

«——TSIS SIM Level 3
«~——CSIM

CSIM TSIS

Three weeks of continuous SSI| observations
(21 daily spectra each).

All spectra (CSIM and TSIS) plotted on their
native irradiance scale

NO scaling or offsets applied here
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200 300

400 500
Wavelength [nm]
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Pl: Dave Harber

CTIM-FD IIP: Compact Total Irradiance Monitor
"Next Generation TIM”

Integrated Detector Head

CTIM Detector Head

CTIM Detector Head

* Each detector head has four channels
— Redundant channel degradation tracking

e Shutter for each channel

i0ocm

Key new technology: Silicon + Vertically Aligned Carbon Nanotubes

* Microfabrication allows 2D fabrication
with micron-level precision

* Typical absorptance 99.9%

* Developed with NIST Boulder Sources
and Detectors Group

Detector
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New Mission Concept
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C-TSIS Mission Concept

i
2015 5ep05

The LASP CTSIS program will address the evaluation of CSIM and CTIM
as a potential low-cost alternative for a TSIS-3

* The goal is to leverage the developments that have occurred with the SmallSat
and CubeSat revolution with regard to lower-cost satellite busses and more
affordable / frequent launch opportunities.

Determine the most robust and cost-effective observation system for
~the continued monitoring of solar irradiance.

~ = Evaluate a future observation system consisting of a small, continuously
" replenished constellation of CTSIS SmallSats for continuity of TSI and SSI
measurements.

22 Sun-Cli 'Symposium, May . . e . .
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C-TSIS Mission Demonstration

Demonstration that CSIM and CTIM can fully meet TSIS
requirements in accuracy, stability, and reporting

— Provide a 6 month overlap with TSIS-2

« Upgrade CSIM to a 3 channel instrument -
 CTIM 1 Detector head (4 channels) =
« Extend LASP 6U CubeSat design to 12U
* Improve parts reliability (Screening, Rad. Testin
« Selectively move from CubeSat-class project engineering
and production processes towards Class-D like project .
requirements (EEE parts, QA, SE, CM) | . ———
= Demonstrate regular and reliable mission operations; <« o -
7% "ta capture, processing through improving automation - 12U C-TSIS
2 and efficiencies from CSIM and CTIM lessons learned Concept

(for Constellation)

2022 Sun-Climate Symposium, May . . e . .
17, 2022, Madison, Wisconsin USA Overview of NASA Sun-Climate Missions and Projects Richard 27



