

The F_{10.7cm} radio flux revisited

Frédéric Clette

World Data Center SILSO
Royal Observatory of Belgium, Brussels

$F_{10.7}$: a reference long-term index

- Background "no-flare" radio flux (λ= 10.7cm)
- Source: mostly thermal radio emission from the lower corona
- Standard proxy of solar UV irradiance (back to 1947)

Tight relation with the sunspot number S_N (since 1700)

F_{10.7}/S_N proxy relation allows backward reconstructions of UV irradiance over multiple centuries

Published F_{10.7}- S_N proxies: a confusing picture

- 12 publications
- 18 formulae:
 - Linear, polynomials, exponentials, ad hoc
 - Fit on monthly, yearly means or smoothed data.

Confusion!

- Empirical models
- Large disagreements
- Systematic underestimate at low values
- No error determination

New polynomial regression with errors

- Data:
 - New re-calibrated S_N (version 2) (Clette & Lefèvre 2016)
 - Daily F_{10.7} series (https://www.spaceweather.gc.ca/solarflux/sx-5-en.php)
- Polynomial fit:
 - Unbiased choice of fitted model
 - Orthogonal distance regression (checked against ordinary L-S regr.)
 - Errors on coefficients
- Limitation to significant terms (maximum degree)
- Error range around the polynomial proxy:
 - Errors of different terms are mutually dependent (no analytical derivation possible)
- Conditional error for each degree from residuals of lower degrees + summation of all degrees
- Comparison with non-parametric means and stdv by bins ($S_N = 20$)

Polynomial fit: monthly means

- 4th degree:
 - Needed for good fit in the low range
- Linear for $S_N > 35$

 $\widehat{F}_{10.7}$ = 67.73 (±1.13)
+ 0.337(0.056) S_N + 3.69 (±0.77.). $10^{-3} S_N^2$ - 1.52(±0.38). $10^{-5} S_N^3$ + 1.33(±0.62). $10^{-8} S_N^4$

Polynomials vs temporal averaging: raw daily

- High linearity down to lowest values
- Degree 2 down to $S_N = 11$
- Wide jump only for $S_N < 11$

$$S_N = 10 N_G + N_S$$

Mean $F_{10.7}(0) = 70.5 sfu$

 \Rightarrow F_{10.7}/S_N almost exactly linear down to the first spot + $S_N=0$ outlier

Model: pure temporal averaging effect

- Synthetic F_{10.7} series:
 - Linear conversion of actual daily S_N series:
 - SN > 19 (more than 1 group) : $F_{10.7} // S_N$
 - SN <= 19: (constant background) $F_{10.7} = 70.5 \text{ sfu}$
- Monthly averaging of synthetic F_{10.7} series

- Matches the observed low-range non-linearity (also for yearly means)
- Non-linearity due to the S_N=0 offset point temporally convolved with the frequency of spotless days.

Background "all-quiet" flux: effect of chronology

- Many disagreeing determinations of the minimum "all-quiet" F_{10.7} flux (spotless Sun): 64 to 74 sfu
- Sorting spotless intervals as a function of their duration
 - Distribution for each duration (mean, stdv, highest/lowest value)
- Rise of average background for short intervals
 68 (@30d) to 74 sfu (@ 1d)
- Constant lower limit: 67sfu ("true" minimum for F_{10.7})

Background flux: implications for averaging

- Short intervals dominate
- Background for daily values is high (~70.5 sfu)
- No spotless interval longer than 32 days
- Background for yearly means is high (always include active days!)
- Lowest background values, near 67 sfu, near 30-day averaging
- **➡** Monthly is optimal!
- Probable mechanism:
 Extended & delayed
 contribution of plages

Is the F_{10.7cm} series homogeneous?

- Base elements:
 - A new homogeneous reference: S_N version 2.0 (Clette et al. 2016)

- Simple quadratic fit F_{10.7} / time
- Attributed to a putative change in the Sun

A sharp jump in 1980

- Abrupt upward jump in 1980:
 - Before 1980: S= 0.6345 (±0.0066)
 - After 1980: S= 0.7020 (±0.0089)
 - Ratio: 1.106 ± 0.017 (10.6 %)
- No significant trend over 1947-1979 and 1980-present
- Good global homogeneity of both series before and after the jump (benchmark)

Pinpointing the date

- Monthly mean ratio:
 - 80% below 1 before Nov. 1980
 - 85% above 1 from Jan. 1981

- Sanity check:
 - S_N: Zurich-Locarno transition in January 1981
- Comparison with raw S_N from 28 individual stations
 - Jump present in 24/28 cases

1980 jump: retracing the historical cause

• Two main $F_{10.7}$ construction eras (non-overlapping):

Covington (1947-1979)

 Manual measuring from paper recorder rolls

Tapping (1982-now)

 Computer processing of digital measurements

Transition team (1979-1981)

- Development of an automated computerized processing
 - No satisfying results > abandoned
- · No clear stable method

Double disruption:

- Change of team (no Covington-Tapping overlap)
- Change of processing method
- Not an instrument calibration issue!
 - Careful and constant procedure throughout
 - Two instrument re-locations (1962, 1990): not detectable in the data

Separate proxies needed for each half-series!

1947-1980

$\widehat{F}_{10.7}$ = 66.64 (±1.48) + 0.366(0.067) S_N + 2.59 (±0.86). $10^{-3} S_N^2$ - 0.99(±0.40). $10^{-5} S_N^3$ + 1.33(±0.62). $10^{-8} S_N^4$

1981-present

$$\widehat{F}_{10.7}$$
= 67.84 (±1.06)
+ 0.386(0.044) S_N
+ 2.86 (±0.45).10⁻³ S_N^2
- 0.73(±0.13).10⁻⁵ S_N^3

Whole series

$$\widehat{F}_{10.7}$$
= 67.73 (±1.13)
+ 0.337(0.056) S_N
+ 3.69 (±0.77.).10⁻³ S_N^2
- 1.52(±0.38).10⁻⁵ S_N^3
+ 1.97(±0.60).10⁻⁸ S_N^4

Conclusions

- Base $F_{10.7}/S_N$ relation fully linear except for 0 point
 - Non-linearity entirely due to temporal smoothing
- Mean quiet-Sun F_{10.7} flux varies with spotless duration
 - Invariable base flux = 67 sfu
- Optimal proxy: 4th order polynomial on monthly means
- 10.5% upward jump occurring in 1980-1981
 - Two proxies currently needed

Clette, F. (2021), J. Space Weather and Space Climate, Vol. 11, id.2, 25 pp. DOI: <u>10.1051/swsc/2020071</u>

Questions?