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* The Madden-Julian Oscillation (MJO), also known as the 30 to 60 day oscillation, is a an eastward
propagating pattern of alternately intense and weak tropical convection and precipitation primarily in the
Indo-Pacific region.

® |t is the strongest of the subseasonal climate oscillations and has important effects on extratropical circulation
and subseasonal climate, including effects on extreme rainfall in the U.S.
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Effect on Precipitation of a Weak MJO Event (Amp. ~ 1 s.d.)
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Etfect on Precipitation ot a Strong MJO Event (Amp. ~ 2
s.d.)
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Stratopause

How can stratospheric conditions

affect the amplitude of the MJO? Polar Vortex
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Is there statistically significant
evidence that stratospheric conditions
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Are Existing Coupled Climate Models
Able to Simulate Stratospheric
Influences on the MJO?

Probably not yet. We have found one model
so far that comes close (MRI-ESM2-0). It
simulates a reduction of static stability after
early winter SSWs. However, the
climatological tropical static stability is too
high compared to observations so there is no
effect on MJO amplitude.

MRI model years with early winter SSWs

vs. model years with no SSW.
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MJO Amplitude, Standard Deviations:
2.20

Beginning about 6 years ago, it was
realized that the amplitude and “ 2.00
occurrence rate of MJO events differs 180
significantly depending on the phase of m 1,60

the stratospheric quasi-biennial oscillation “

during boreal winter (DJF). -

Yoo and Son, GRL, 2016: 1.0 20 3.0 40 5.0 6.0 7.0 8.0
MJO phase
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Equatorial Zonal Wind, 9-48 Month Bandpass

Credit: Baldwin et al. 2001



Is there statistically significant
evidence that stratospheric conditions |
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Hypothesized Mechanism: Stratopause Holton & Tan, 1980

Poleward Displacement of the Zero Wind Line Poleward
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Tropical Lower Stratospheric Static Stability vs. MJO Amplitude (DJF):
® QBO Easterly B QBO Westerly
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Tropical Lower Stratospheric Static Stability vs. MJO Amplitude (DJF):
B SMAX
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Calculate Normalized
Occurrence Rates of MJO
events with amplitudes > 2.0
versus phase lag relative to
64-68 solar UV peaks. Only
days in DJFMAM are
considered.

Also, calculate corresponding
mean static stabilities in the
lower stratosphere (70 to 100
mb), averaged over the warm
pool region where MJO
amplitudes are largest.

A Significant Response
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Hypothesized Mechanism:

Direct Effects of Solar UV Increases
On Ozone and Radiative Heating in
the Tropical Upper Stratosphere

/

Aw" <0

\ \ \ dT/dt >0
dOa/dt>O

Stratopause

=

Surface

Kodera & Kuroda, 2002

Positive Perturbation of Zonal Wind;
Indirect Effects on Wave Absorption at
Lower levels in the Extratropics

VF>0
ou/ot >0

Vertically Propagating,
Planetary-scale Rossby Waves

Winter Hemisphere




How well does the MRI model simulate the observed QBO and 11-yr
solar influences on extratropical wave forcing in late fall / early winter?
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Conclusions

Sudden stratospheric warmings (SSWs) in late fall and early winter (prior
to mid-January) produce a statistically significant, lagged increase in MJO
amplitude beginning about 20 days after the central date of the SSW.

There is evidence for a secondary influence of the 11-year solar cycle (in
addition to an influence of the stratospheric QBO) on the occurrence rate
of relatively strong MJO events.

At least one coupled model participating in CMIP6 (MRI-ESM2-0)
simulates well the observed QBO and 11-yr solar influences on early
winter wave forcing and comes close to simulating the early winter SSW
effect on MJO amplitude. With some model improvements, it could
potentially simulate the QBO/Solar-MJO connection.



Extra Slides



Tropical Lower Stratospheric Static Stability vs. MJO Amplitude (DJF):
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Is there statistically significant
evidence that stratospheric conditions
can influence the MJO?

— 90°N
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EAST LONGITUDE WEST LONGITUDE
20° 60° 100° 140° 180° 140° [00° 60° 20°

Why is MJO Convection Especially
Sensitive to Conditions in the Tropical
Lower Stratosphere?

Unlike normal tropical convection, the
MJO extends vertically into the uppermost
troposphere so it is possible that
conditions at its upper boundary can
affect its eastward propagation and
intensity. An MJO event can potentially
be amplified by favorable conditions (e.q.,
reduced static stability) in the lowermost
stratosphere.

mall Credit: Madden &
i Julian, 1972
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How does the Stratospheric QBO modulate the MJO?
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A similar but less statistically significant
dependence of the amplitude and
occurrence rate of MJO events on the
phase of the 11-yr solar cycle was also
found.

NRL 205 nm Solar UV Flux (LASP) (Fas)

21 22 23

Solar

Solar Minimum

9.5
1980 1985 1990 1995 2000 2005 2010 2015

Normalized Occurrence Rate, %

100

90

80

7

6

5

4

3

2

1

0

. QBOE . QBOE/SMIN . QBOE/SMAX . SMIN
. QBOW . QBOW/SMAX . QBOW/SMIN . SMAX

DJF DJF DJF DJF

Hood, GRL, 2016:




Effect on Air Temp. of a Weak MJO Event (Amp. ~ 1 s.d.)
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Effect on Air Temp. of a Strong MJO Event (Amp. ~ 2 s.d.)
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Solar cycle S QBO East Phase [[1o79-2019 | QBO West Phase
dependence of

the QBO
modulation of
the MJO in
February; solid
symbols
indicate major
midwinter
warmings
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The MJO is characterized by an
amplitude and phase. The amplitude
can be derived from an EOF analysis of
satellite outgoing longwave radiation
(OLR) data. The phase is an indicator
of the longitudinal location of the main
convective center of the MJO.

Amplitude = (EOF12 + EOF22)'/2

EOF1,EOF2 are derived from an EOF analysis of
satellite Outgoing Longwave Radiation Data

Credit: Jon Gottschalk



Evidence for a SSW influence on deep tropical convection:

Obser va.tions (Kodera, GRL, 2006); Model Simulation (Eguchi et al., ACP, 2015):
Composite of 12 selected SSWs: (See also Yoshida and Mizuta, IUGG, 2019)
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Both observations and model simulations indicate an increase in
convective cloud production just south of the equator following a SSW




Solar Variability can also affect static stability in the tropical
lower stratosphere

1. Direct Effects of Solar UV Increases on
Ozone and Radiative Heating in the

Tropical Upper Stratosphere

2. Positive Perturbation of the Zonal Wind
with Indirect Effects on Wave Absorption
at Lower Levels in the Extratropics
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