An Update on the Direct Influence of Solar Spectral Irradiance on the Surface Climate

Xianglei Huang, Xiuhong Chen, Xianwen Jing

The University of Michigan, Dept. of Climate and Space Sciences & Engineering

Dong L. Wu

NASA/GSFC

Peter Pilewskie, Odele Coddington, Erik Richard

CU-Boulder, LASP

2022 Sun-Climate Symposium

Acknowledgements: NASA TSIS-1 mission and the LWS program

Initial question to be addressed:

Assuming that two sets of SSIs have identical TSI but different partitions between visible and near-IR SSI, *up to current observational uncertainty*, then, when they are used in the climate model simulations separately, will the simulated climate be the same or statistically different?

Different partitions: CMIP6 default vs. TSIS-1 observations

Why does VIS-NIR partition matter?

(Petty, Fig 7.6)

Sea ice vs. open water: VERY different reflections for VIS vs. NIR H₂O: much more absorption in the near-IR than in the visible

CESM2 annual-mean surface albedo

Starting Points

- Sun-climate connection matters
- Both TSI and SSI matters: the
 - TSI: "bottom-up" mechanism
 - SSI: "top-down" mechanism for UV SSI
 - UV→ozone →strato. radiative heating →temperature gradient → strato. circulation →STE →tropo circulation →surface climate
 - Little discussion about VIS and near-IR
 - Partly limited by the past observations
- CMIP6 solar forcing data set (1850-2300; Matthes et al, GMD, 2017)
 - Used by all modeling centers for IPCC AR6 model simulations (CMIP6)

TSIS-1 SSI measurements

- Successor of SORCE SIM
 - TSIS-1 SSI covers 0.2 to 2.4 μm
- Improved performance for visible and near-IR SSI
 - 0.25% radiometric uncertainty (10x better than before)

TSIS-1 SIM (from lasp.colorado.edu)

Solar irradiance vs. TOA radiative forcing

- TOA radiative forcing is a common metric used in climate change studies
- Like what we have learn in Atmospheric Physics 101

$$\Delta RF = \Delta SSI/4$$

Fig. 2.2 Diagram showing the shadow area of a spherical planet.

CMIP6 Solar irradiance dataset

	Mean (Wm ⁻²)	Daily standard deviation (Wm ⁻²)
TSI	1360.9	0.42 (0.031%)
UV	85.8	0.13 (0.15%)
Visible	655.2	<mark>0.22</mark> (0.034%)
Near-IR	613.6	<mark>0.10</mark> (0.017%)

CMIP6 SSI: 1978-2014 on RRTMG_SW bands

CMIP6 TSI/SSI vs. TSIS-1 obs. (2018-2022)

CO2 Radiative forcing: 1.66 Wm⁻²

Year

~15 Wm⁻² difference, i.e., -3.75 Wm⁻² difference in TOA forcing (Vis – NIR)

- The difference is orders of magnitude lager than the temporal variations of SSI in CMIP6
- First-order question: how such differences between visible and near-IR can affect the simulated climate?
- Making two SSI datasets:
 - CESM2 SSI: 1978-2014 CMIP6 SSI scaled to TSIS-1 TSI by a factor of 1.00003
 - TSIS-1 SSI:
 - Within 0.2-2.4um, time-averaged TSIS-1 observed SSI
 - Outside, CMIP6 SSI but scaled to make the identical TSI as TSIS-1 observation

CESM-2 numerical experiments

- Slab-ocean and fully-coupled runs at present-day conditions
- Four-member ensemble runs
 - One ensemble with CESM2 SSI (control)
 - The other with TSIS-1 SSI (perturbation)
 Identical TSI/Different VIS-NIR SSI
 TSIS-1 SSI has more in VIS and less in NIR than the CESM2 SSI
- Slab-ocean run: 20-year simulations and last 10 years used for analysis
- Fully-coupled run: 50-year simulations and last 30 years used for analysis

Zonal-mean climatology difference (Slab-ocean run; 10-year mean difference)

Feedback analysis (TSIS-1 – CESM2)

All-sky Feedback (Wm ⁻² /K)		
Planck	-3.01	
Lapse-rate	0.49	
water vapor LW	0.87	
water vapor SW	0.28	
Surface albedo	0.42	
Cloud LW	-0.61	
Cloud SW	0.70	

Differences (TSIS-1 - CESM2)

Jing et al., 2021 Slab ocean run (10-year mean difference)

Fully coupled run (30-year mean difference)

1. Ocean dynamics, especially for the Southern Ocean

Differences (TSIS-1 - CESM2)

- 2. Time of average/high-latitude variability
- 3. Difference in CESM 2.1.1 vs. 2.1.3

Conclusions

- A discrepancies between CMIP6 and TSIS-1 SSI in the visible and near-IR: as large as ~ 4 Wm⁻² in the TOA forcing
- Even with the identical TSI, SSI partition between the visible and near-IR matters for the climate simulation
 - Disparity between visible and near-IR absorption by high-latitude surface
 - Also the atmospheric near-IR absorption(?)
- Spectral TOA forcing matters, not just the broadband TOA forcing
 - Ice spectral albedo feedback
- Next step: how does the time-varying SSI affect the simulated climate via this bottom-up mechanism?

THANK YOU!

Atmosphere temperature differences

Surface SW Flux (net positive downward)

TSIS-1 has more SSI in visible than CESM2

Vertical shades: sea ice changes are statistically significant

Feedback analysis (TSIS-1 – CESM2)

All-sky Feedback (Wm ⁻² /K)		
Planck	-3.01	
Lapse-rate	0.49	
water vapor LW	0.87	
water vapor SW	0.28	
Surface albedo	0.42	
Cloud LW	-0.61	
Cloud SW	0.70	

Besides ocean dynamics, what could be reasons for slab-ocean vs. fully-coupled differences? (Preliminary results)

The yellow shades indicate latitudes where zonal mean sea ice fraction . 0.1

CESM spectral interval: 1, 3, 5, 7, 10, 30, 50 nm

TSIS spectral interval: 0.04~9 nm