

Solar Variability Results from the SORCE and TSIS-1 Missions

Thomas N. Woods • Jerald W. Harder • Greg Kopp • Martin Snow • Erik C. Richard • Odele M. Coddington • Peter Pilewskie

Laboratory for Atmospheric and Space Physics (LASP) @ University of Colorado (CU)

South African National Space Agency & University of the Western Cape

Talk Summary

- Introduction to the Solar Irradiance Climate Records
 - Satellite-era Record over 4 decades (27-day rotations, 11-year / 22-year cycles)
 - Solar-proxy Record over 4 centuries (Maunder Minimum, 100-year Gleissberg cycle)
 - Long-term Ice-core and Tree-ring Records over many centuries (Grand Min. & Max.)
- Solar Rotational (27-day) Variability
 - Ultraviolet (UV) and Total Solar Irradiance (TSI) are in-phase 86% of the time
- Solar Cycle (11-year) Variability
 - SORCE solar cycle variability results are most accurate for λ < 300 nm
 - TSIS-1 provides improved solar variability results, especially important for infrared (IR)
- □ Comparison of Recent 2019-2020 Minimum to Previous 2008-2009 Minimum
 - There is no significant (if any) change in the irradiance between these minima
- REFERENCE: Woods et al., Solar Phys, 2022, https://doi.org/10.1007/s11207-022-01980-z

Total Solar Irradiance (TSI) Climate Record

17 TSI data sets make up the TSI Climate Record.

The 4-decade TSI Climate
Record accurately defines
variability for the approx. 27-day
solar rotations and for the
11-year solar activity cycle
(Schwabe cycle).

The 11-year cycle is driven by solar 22-year solar magnetic cycle (Hale cycle).

Solar Spectral Irradiance (SSI) Climate Record

- 11 SSI data sets are used for the SSI Climate Record.
- There are many spectral and temporal gaps though for the SSI observations.
- Solar SSI models are important to fill the gaps in wavelength and time.

Solar Spectral Irradiance (SSI) Records

Solar SSI Composites

SIMc – Mauceri et al. 2020

SOLID – Haberreitter et al. 2017

SSI-2 – DeLand et al. 2019

SSI-3 - Woods & DeLand 2021

Solar SSI Variability Models

NRLSSI-3 – Lean, Coddington

SATIRE-S – Krivova et al. 2011

SRPM - Fontenla et al. 2011

records

observations

NRLSSI-2 solar model has been adopted as NOAA SSI Climate Record (Coddington et al., 2016).

Solar Rotational Variability: ~27-days

Ultraviolet Ly-α and TSI are in-phase 86% of the time

(there are 205 solar-rotation periods over the 17-year SORCE mission)

Ultraviolet Ly- α and TSI being in-phase 86% of the time is related to the Impulse Response Function for new Sunspots

Sunspot Impulse Response Function for TSI (Preminger & Walton, *GRL*, 2005)
First Rotation: strong negative effect on TSI Other Rotations: weak positive effect on TSI

Sunspot Impulse Response Function for SSI (Dudok de Wit et al., *Ap J*, 2018)

Phasing Relative to Ly- α : UV (λ < 290 nm) is in-phase and out-of-phase rotations are important for other λ s

Positive-Only Rotational Variability

Positive & Negative Rotational Variability

Wavelength (nm)

In-Phase (Positive) Out-of-Phase (Negative

rotation.

ability

Black

NRLSSI-3 and SATIRE-S models agree even better with SORCE solar rotational variability for λ < 1600 nm

NRLSSI-3

SATIRE-S

Siggest differ

Figure

Harder et al. (2008) SC-23 Result

Solar Cycle Variability: ~11-years

SORCE observed during the declining phase of Solar Cycle 23 and over all of Solar Cycle 24

Best results

Energy Variability (W/m²/nm) peaks at 300-500 nm. SORCE challenges are 308-430 nm and NIR > 900nm.

SORCE Energy Variability (Max-Min) W/m²/nm

results

SIM results

SORCE vs. NRLSSI-3

NRLSSI-3 and SORCE variability is more consistent in broad bands for Solar Cycle 24

SORCE SIM SC-23 Result

Harder et al. (2008)

SORCE SIM SC-24 Result

Woods et al. (2022)

- Second and third generation SIM instruments aboard TSIS-1 and CSIM have much improved accuracy and measurement precision than first-generation SORCE/SIM.
- Recent increases in solar activity are providing improved variability results.
 - The NIR variability is notably more accurate and shows interesting differences to NRLSSI-3.
 - New results are considered preliminary due to last SIM-3 calibration being in Oct. 2021.

Talk Summary

- Introduction to the Solar Irradiance Climate Records
 - Satellite-era Record over 4 decades (27-day rotations, 11-year / 22-year cycles)
 - Solar-proxy Record over 4 centuries (Maunder Minimum, 100-year Gleissberg cycle)
 - Long-term Ice-core and Tree-ring Records over many centuries (Grand Min. & Max.)
- Solar Rotational (27-day) Variability
 - Ultraviolet (UV) and Total Solar Irradiance (TSI) are in-phase 86% of the time
- Solar Cycle (11-year) Variability
 - SORCE solar cycle variability results are most accurate for λ < 300 nm
 - TSIS-1 provides improved solar variability results, especially important for infrared (IR)
- □ Comparison of Recent 2019-2020 Minimum to Previous 2008-2009 Minimum
 - There is no significant (if any) change in the irradiance between these minima
- REFERENCE: Woods et al., Solar Phys, 2022, https://doi.org/10.1007/s11207-022-01980-z

* Extra Slides

Solar Minima Comparison of 2019-2020 to 2008-2009. Conclude that there is no change larger than $1-\sigma$ uncertainty.

Solar VUV (0-200nm) appears to be 2% lower in 2019-2020 than 2008-2009.

SABER data indicate similar thermosphere climate index for this recent minimum as in 2008-2009.

eing lower

SORCE/SIM Integrated SSI change is -0.05 W/m² (± 2.8 W/m²) lower in 2019-2020. SORCE/TIM TSI change is +0.14 W/m² (± 0.14 W/m²) higher in 2019-2020.

Sunspot Number (SSN) is longest direct solar record. Maunder Minimum, ~100-year Gleissberg Cycle

The 4-century SSN record reveals the Gleissberg cycle and a period of low solar activity in the late 1600s called the Maunder Minimum.

Cooler temperatures in the 1600s on Earth are associated with the Maunder Minimum.

Other 400+ Year Proxies
Solar Magnetic Field: e.g.
Wang & Lean, 2021
Geomagnetic Field: e.g.
Svalgaard, 2016

Sunspot

~100-year Gleissberg Cycle: Example by Estimating Solar Magnetic Fields with SSN

- Solar magnetic field estimates are made using SILSO SSN and varying the poleward flow velocity for the magnetic field.
 - Solar polar field is good index for next cycle maximum.

Mannde

This reconstruction clearly shows Gleissberg minima.

1710: Maunder Minimum

1810: Dalton Minimum

1910: Gleissberg Minimum

2010: Modern Minimum

Ice Cores provide proxy of solar activity for 9000 years Grand Minimum and Grand Maximum

Hallstatt

