

NSF's National Solar Observatory

Solar Ha Excess during Solar Cycle 24 from Full-disk Filtergrams of the Chromospheric Telescope

ANDREA DIERCKE

C. KUCKEIN, P.W. CAULEY, K. POPPENHÄGER, J.D. ALVARADO-GÓMEZ, E. DINEVA, C. DENKER

Introduction

- Usefulness of spatially resolved
 Hα excess as tracer for solar
 activity
- Comparison with established solar activity tracers
- Motivation: Hα activity dominated either by changes of the mean intensity or by area coverage fraction of Hα excess regions? → Disentangle the area coverage fraction and active region emission strength for unresolved stellar surfaces

A&A 661, A107 (2022) https://doi.org/10.1051/0004-6361/202040091 © ESO 2022

Solar H α excess during Solar Cycle 24 from full-disk filtergrams of the Chromospheric Telescope

A. Diercke^{1,2,3}, C. Kuckein^{1,4,5}, P. W. Cauley⁶, K. Poppenhäger¹, J. D. Alvarado-Gómez¹, E. Dineva^{1,2}, and C. Denker¹

- ¹ Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
- ² Universität Potsdam, Institut für Physik und Astronomie, Karl-Liebknecht-Straße 24/25 14476 Potsdam, Germany
- National Solar Observatory (NSO), 3665 Discovery Drive, Boulder, CO, USA 80303 e-mail: adiercke@nso.edu
- ⁴ Instituto de Astrofísica de Canarias (IAC), Vía Láctea s/n, 38205 La Laguna, Tenerife, Spain
- ⁵ Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain
- ⁶ Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO 80303, USA

Received 8 December 2020 / Accepted 17 February 2022

Chromospheric Telescope (ChroTel)

Kentischer et al. 2008, Proc. SPIE Vol. 7014

- □ 10-cm aperture, spatial resolution: 0.96"/pixel
- \Box Three Lyot filter: Ca II K, H α , He I 1083 nm
- □ Observations: 2012 2020 (1056 observing days)
- \Box Hα: 656.2nm, FWHM $\Delta\lambda$ = 0.05 nm
- Dark filaments & bright plage regions

2022 Sun-Climate-Symposium, Madison, Wisconsin

Imaging Hα Excess and Deficit

- Limb darkening correction, intensity correction with Zernike polynomials
- Masks: Threshold + morphological image processing

$$T_{100}^{\rm E} = I_{\rm med} + 0.1 \times I_{\rm med}$$
 $T_{100}^{\rm D} = I_{\rm med} - 0.1 \times I_{\rm med}$

Imaging Hα Excess and Deficit

(Johannesson et al. 1998, Sol. Phys., 177, 265; Nagvi et al. 2010, AN, 331, 696)

$$E_{100} = \frac{1}{1000} \sum_{ij} f_{ij} \quad \text{with } \begin{cases} f_{ij} = I_{ij} - T_{100}^{E} & \text{if } I_{ij} \ge T_{100}^{E} \\ f_{ij} = 0 & \text{if } I_{ij} < T_{100}^{E} \end{cases}$$

$$D_{100} = \frac{1}{1000} \sum_{ij} f_{ij} \quad \text{with } \begin{cases} f_{ij} = |I_{ij} - T_{100}^{D}| & \text{if } I_{ij} \le T_{100}^{D} \\ f_{ij} = 0 & \text{if } I_{ij} > T_{100}^{D} \end{cases}$$

2022 Sun-Climate-Symposium, Madison, Wisconsin

Hα Excess and Deficit for Solar Cycle 24

- Cyclic behavior of imaging Hα excess and deficit
- Comparison to other tracers: Mg II index, F10.7cm radio flux, sunspot number
- Best correlation of Excess with Mg II index
- Best correlation of Deficit with F10.7cm
- Deficit: filament cycle visible, peak later then for other tracers

Hα mean intensity for excess and deficit regions

- Mean intensity for Hα excess regions and Hα deficit regions
- Monthly mean of difference of mean intensity
- Similar behavior of both quantities

Mean intensity distribution of patches of $H\alpha$ patches for active and inactive Sun

- Histogram of mean intensity of individual patches of $H\alpha$ excess
- Active Sun: 2012 2015 (202 991 patches)
- Inactive Sun: 2016 2020 (25 426 patches)

A. Diercke et al.

Similar skewed Gaussian distribution for both active and inactive Sun

2022 Sun-Climate-Symposium, Madison, Wisconsin

Active Longitude for Solar Cycle 24 – Hα Excess

- Comparison of Hα excess, area coverage fraction and mean intensity
- Average of all 84 Carrington rotations (rotation period: 27.27 days)
- High correlation of Hα excess
 and area coverage fraction
- Active Sun: Active longitude at about 150° for Hα excess and area coverage fraction
- Inactive Sun: no clear active longitude

Active Longitude for Solar Cycle 24 - H α Deficit

- Comparison of $H\alpha$ deficit, area coverage fraction and mean intensity
- Average of all 84 Carrington totations (rotation period: 27.27 days)
- High correlation of Hα excess and area coverage fraction
- Active Sun: Active longitude between 150° and 180° for Hα deficit and area coverage fraction
- Inactive Sun: no clear active longitude
- Spikes in area coverage fraction maybe due to large filaments

Hα Excess of Active Regions

- □ Sample of 15 active regions between 2012 and 2020
- Sequence of disk passage
- Different activity samples (with and without flaring activity)
- \Box Comparison of H α excess, Number of pixels, and mean intensity

NOAA	Observing period
11476**	2012/05/09 - 2012/05/16
11555	2012/08/26 - 2012/09/04
11818**	2013/08/10 - 2013/08/20
11835	2013/08/25 - 2013/09/05
11850*	2013/09/19 - 2013/10/01
12049*	2014/04/29 - 2014/05/08
12139*	2014/08/11 - 2014/08/22
12389*	2015/07/24 - 2015/08/03
12578	2016/08/15 - 2016/08/26
12686	2017/10/24 - 2017/11/01
12709	2018/05/08 - 2018/05/19
12712*	2018/05/24 - 2018/06/04
SPoCA 21904^{\dagger}	2018/07/08 - 2018/07/18
12767	2020/07/22 - 2020/08/01
12769	2020/08/01 - 2020/08/13

- † NOAA identification not available
- * Flaring active regions (C-class)
- ** Flaring active regions (M-class)

Hα Excess of Active Regions

- High correlation for Hα excess and number of pixels
- Some examples with high correlation of Hα excess and mean intensity
- Mean intensity high influenced by flaring activity
- No clear correlation between size of the region and mean intensity

Conclusions

- Hα excess and deficit reflect solar activity cycle
- □ Hα activity dominated either by changes of the mean intensity or by area coverage fraction of Hα excess regions?
 → no direct relationship found: impact on the modeling of stellar active regions, area coverage fraction and the intensity of Hα emitting regions are required to accurately represent chromospheres of solar-like stars.
- Active latitude of sunspots is visible with the Hα excess and deficit in a Carrington reference frame averaged over the maximum phase of the solar cycle.
- Intensity distribution of Hα excess regions for the maximum and minimum of the solar cycle revealed a similar shape, but reduced by a factor of four in the minimum
- \Box Hα ground-based images almost continuously available, e.g. Hα Network or GONG; going back until 1914

