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* What are polar mesospheric clouds (PMCs)?

Also known as noctilucent (“night-shining”) clouds, since naked-eye observations occur after
sunset or before sunrise.

Only exist at very high altitude (80-85 km).
Only observed in summer with very cold temperatures (< 150 K).
Mostly seen at high latitudes (> 50°).

Large horizontal extent (hundreds of km), small vertical thickness (1-3 km) [ optical depth is ~10™*
or less.

Composed of water ice crystals (size ~ 20-60 nm).

* First ground-based observations reported 1in 1880s. Most sightings made from
Northern Europe between 50°-63° latitude.

 First satellite observations in 1969 showed greater latitudinal extent, presence in both
hemispheres.

* PMC formation and brightness are “exquisitely’ sensitive to mesospheric temperature
and water vapor content.
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15 July 2009: Noctilucent clouds over 14 July 2009: “Daily daisy” of polar
Nebraska [44°N] (courtesy Mike Hollingshead) mesospheric clouds (PMCs) observed by CIPS
(courtesy AIM Science Team)



* Interpretation of noctilucent clouds (NLCs) as mesospheric ice clouds
implies sensitivity to solar irradiance imnput through mesopause
temperature, water vapor dissociation. Expect anti-correlation between
NLC occurrence frequency and solar flux.

* Vestine [1934]: Noted that seasons with more frequent NLC
observations (e.g. 1887, 1899, 1911, 1932) coincided with sunspot
minima, but did not draw physical connection.
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Fig, 40, Yearly variation of reported NLC activity compared with solar activity.

Fogle and Haurwitz [1966]: “Thus the comparison of the variation of
the number of reported NLC sightings per year with the sunspot cycle at this
time cannot lead to a reliable conclusion as to whether there is a dependence
of NLC activity on solar activity.”

“An extended series of NLC observations over a few sunspot cycles by the
existing large network of observers should provide the necessary data to
settle this question, however.”
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von Zahn and Berger [2006]:

* Review of previous results

* Observed that NLC observation range
(55°-65°N) 1s limited to lower latitudes of
polar region (LI increased sensitivity?)

* Noted inconsistency regarding NLC
behavior [fop] and solar flux [bottom]
during 1950s compared with other time

periods
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Figure 1: The varations of NLC occurrence rate (upper panel) and
sumimer values of the solar F10.7 cm index (lower panel) since 1953,
FH = FoGLE and HAURWITZ (1974); G = GADSDEN (2002). For
more details, see text.



Thomas and Olivero [1989]: 15

* No long-term trend in SME data (1981-1985).

10
* No way to separate solar cycle, trend signals

with short data set and timing of
measurements.

Occurrence Frequency (109)

Thomas et al. [1991]: 0.8
* Nimbus-7 SBUV shows anti-correlation 0.8
between frequency and Lyman alpha. 0.4

* SH data (1978-1986) show 2x variation for 0.2

faintest clouds (PMCs), ~10x variation for 9

brightest clouds. 2.5 3.0

B SOUTH (a) -

an

e,
1

3.5 4.0
Lyman-alpha (10" photons — cm2—s-1)



. PMC g—plot Fit Results [NORTHERN Hemisphere]: Cumulative FREQUENCY
DeLand et al. [2003]' triangle=N-"7, asteris/c[N 9 squafre N—11, cross=N—-14, diamond=N—-16
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Hervig and Siskind [2006]:

- Long data set from HALOE
(1992-2004) with simultaneous

atmospheric data.

- 80 km, 67.5° lat. temperature:

Positive correlation with Lyman
alpha, ~4-5 K amplitude, no lag.

- 80 km, 67.5° lat. water vapor:

Anti-correlation with Lyman alpha,
25% amplitude for cycle, <1 year

lag (not sharp).

- PMC extinction: Anti-correlation
with Lyman alpha, 23% amplitude

for cycle, <1 year lag.
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DeLand and Thomas [2019]:

Merge data from multiple SBUV instruments
for each season

Calculate 1ce water content (IWC) to adjust
brightness for different measurement
conditions

Introduce break point in trend analysis that
corresponds with turnaround 1n stratospheric
ozone time series (proxy for mesospheric
temperature?)

NH solar correlation 1s » = -0.8 during
1979-1997, r = -0.4 during 1998-2018

SH solar correlation 1s 7 = -0.4 during both
periods

Average IWC [g km™?]

Average IWC [g km™?]
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Observations: Lidar

Fiedler et al. [2017]: 3 o v T b

Lidar measurements at ALOMAR (69° T Y N oot “df
N) for 1997-2017.
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* Many studies have looked at solar cycle variations in mesospheric
environmental parameters (temperature, water vapor, vertical winds).

75°N, June

g5

*Garcia [1989]:
* 2-D model
* >2x Lyman alpha variation
produced 35-40% change 1n

H_ O mixing ratio at 80 km
through photodissociation

* Interpreted as support for j
water vapor control of PMCs SOFW"EW
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Fig. 11. Vertical profile of water vapor (ppmv) for the case with a reduced
by a factor of 4, and for the same case with ultraviolet fluxes typical of
solar maximum conditions.



Lubken et al. [2009]:

* Improved 3-D model (LIMA)
with ECMWF “nudging” up to
35-45 km

* Explicit ice particle
microphysics calculation with
40,000,000 condensation nuclei

* Yearly PMC variations in
brightness and frequency are

anti-correlated with Lyman
alpha over 1961-2008 (r = -0.4)
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Figure 7. Time series of NLC brightness (red) and
occurrence rates (blue) from LIMA/ice at 69°N. The data
have been smoothed by running mean over 2 years. The
solar cycle variation of Ly-a radiation is also shown (green
line, right axis in 10'" photons/(cm® s~ ')).



Mesopause temperature vs. Lyman alpha flux

July, 64° -87° N

January, 64° -87° S
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Karlsson and Kuilman [2018]:

Use CMAM30 model to examine residual circulation response

* Increased solar flux affects temperature gradients, winter zonal flow

Increased gravity wave breaking in summer polar mesosphere gives adiabatic cooling

Result 1s small mesopause temperature response to solar activity



Hervig et al. [2019]:

 Examine additional
data sets for PMC
behavior (CIPS and
SOFIE instruments on
AIM satellite)

e (Calculate IWC
variations as
anomalies from
long-term mean to
adjust for sampling
differences and
deseasonalize data

Recent Analysis
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Hervig et al. [2019]:

e (Correlation coefficients
between IWC and Lyman

alpha using data from

previous slide (with SBUV
separated into two sections)

Note poor correlation using
post-2005 data (blue, red) in

both hemispheres
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68°N, July

68°S, January

o) 68°N, Jul fit Comp., r= 0.42 : 2.0F b) 68°S, Jon E

1 C b) s fit Comp., r=-0.16
Hervig et al. [2019]: gE 8085 km fit HALOE, r=-0.67 i Reesem P0G, recRilr

* Compare to
anomalies for water

vapor [top],
temperature

[bOt tom] ok HALOE SOFIE Composite

1 1

H,0 anomaly (ppmv)

H,0 anomaly (ppmv)

: 1995 2000 2005 2010 2015 1995 2000 2005 2010 2015
* H,O signal

. - c) 68°N Jul f|t Comp, r= 0.71 _ [ d) 68°S, Jon fit Comp., r= 0.62
disappears from 6F ' 80-85 km fit HALOE, r= 0.60

fit HALOE, r= 0.75 | 80- 85 km

2005 onward

* Sensitivity of IWC
to AT 1s 3-4x larger
than response to
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Average IWC [gm/km?]

NOAA-19 SBUV/2 and Suomi NPP OMPS NP IWC data:
* Updated through most recent season (SH 2021-2022)

* NH IWC values follow Lyman alpha during 2013-2017, then rise during solar minimum

 SH IWC values jump 1n 2017, but have significant interannual variability
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* PMCs are very sensitive to local environment in mesosphere (temperature,
water vapor), which responds to solar activity

» Visual observations in 20™ century showed possible solar cycle
relationship, but data quality 1s inconsistent

e Satellite measurements show clear anti-correlation between PMCs and solar
activity during ~1978-2000, but very little correlation since 2000

* Models suggest no solar signal in T and H,O at polar summer mesopause

* Were previous results showing a correlation amplified by volcanic eruptions
(El Chichon, Mt. Pinatubo) near solar maxima’



(a) GOES-17 b) Himawan-8
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Figure 1. Image of the plume on 15 January 2022 at 04:30Z from (a) GOES-17 and (b) Himawari-8. Colored dots mark manual stereo height estimates (in km), and the
white/black triangles show the volcano's location. The white arrows in panel (a) depict the shadow of a plume edge feature and a dome feature, with the shadow length
and the derived height given above/below the arrow. Arrows in the lower right of each panel indicate the sun-to-pixel and satellite-to-pixel azimuths.

Carr et al. [2022], Geophys. Res. Lett., 49, e2022GL098131

Hunga Tonga-Hunga Ha-apai eruption (15 January 2022):

* Plume height reached ~55 km!
* Water vapor injection into stratosphere ~10% of global budget [ P. Newman, priv. comm.]
* Occurred on rising phase of solar cycle

Possible long-term effects on PMC behavior?



