VARC EST EARTH INSTITUTE

Current and future measurements of aerosol and cloud properties with the HARP family of Multi-Angle Imaging Polarimeters.

J. Vanderlei Martins¹, Xiaoguang (Richard) Xu¹, Anin Puthukkudy¹, Noah Sienkiewicz¹, Brent McBride¹, Roberto Fernandez-Borda¹, Lorraine Remer¹, Oleg Dubovik²

- 1- UMBC Earth and Space Institute and JCET-UMBC/NASA GSFC
- 2- University of Lille and GRASP.

HARP observations

NASA

70 120 170 Scattering Angle

The promise of multi-angle polarization

Observation and model

- Aerosols
 - Accurate AOD for fine and course mode
 - Aerosol microphysics: particle size and shape

- Single scattering albedo
- Real and Imaginary refractive indices
- Particle phase function
- Clouds
 - Cloud phase
 - Cloud effective radius
 - Cloud effective variance
- Surface
 - BRDF and BPDF retrievals
 - Improved atmospheric correction

HARP CubeSat

NASA-ESTO InVEST Program

SDL Spacecraft

Launched: Nov 2nd, 2019 ISS Deployment: Feb 19th, 2020 First light: April 15th, 2020 **UMBC Sensor**

3U size

HARP Prism

Telescope

NASA

I, Q, U

Wide FOV Optics

HARP Stripe Filter

Camera and FPGA Electronics

- 670 nm
- 870 nm

lines in the detector (viewing angles)

How groundbreaking can a CubeSat satellite be?

NAS

HARP is the only HyperAngular Imaging Polarimeter in Space!!!

Partial list of Current and Planned Earth Observing Polarimeters

Flown or Potentially flown

- HARP CubeSat UMBC/NASA US
- POSP/HJ-2: China
- SMAC/GFDM-1: China
- PCF/GF-5(02): China
- ScanPol MSIP: MAO/Ukraine

Planned for Near Future

- GAPMAP Commercial/France+US
- HARP2: UMBC/NASA US on PACE mission
- SPEXOne: SRON/Netherlands on NASA PACE mission
- 3MI: EUMETSAT/EU
- MAIA: JPL-NASA/US
- MAP CO2M: Copernicus/EU
- AOS Polarimeter NASA/US

Dubovik et al. 2020

The HARP Polarimeter Family

Airborne System

- Frequent Ground calibration
- ~40m resolution
- Potential for HARP2 Cal/Val
- Has flown two successful flight campaigns

Launched to ISS Nov 2nd, 2019 Deployment Feb 19th, 2020 First light April 15th, 2020

- 4 km resolution
- Limited data set: 1 snapshot/day
- No calibrator onboard/only vicarious

Launch: 2022-23

- Improved SNR
- Better calibration features
- ~3 km resolution
- Global coverage in 2 days

New Concept

- Extended Wavelength range (UV to SWIR wavelengths)
- Improved SNR
- Full calibration features
- ~0.5km resolution

ASTEC 6U e) **UV-SWIR**

ASTEC Polarimeter concept for SmallSat constellation

- UV-SWIR polarimeter
- Wide FOV/Global coverage

Current Projects

HARP Sensor Specs

	AirHARP	HARP CubeSat	HARP2
Spectral Coverage (nm)			
Number of Viewing Angles	20 for 440, 550, 870 and 60 for <mark>670</mark> nm		10 for 440, 550, 870 and 60 for 670 nm
Image Coverage			
Platform Height	10 - 20 km	400 km	676 km
Ground Resolution	30 m	4 km	3 km
Lifetime	2017 - Present	2020 - 2022	2024 – 2027+
Launch Platform	Aircraft	CubeSat	PACE Satellite

Images collected by HARP CubeSat from 2020-2022

HARP CubeSat Stats:

- 777 Days in orbit
- 12,432 sun sets and rises
- 62 science captures
- 111,600+ images
- 3.4+ Billion pixels

Multi-Angle Intensity of Saharan Dust

33.82°W28.58°W23.34°W 18.1°W 12.86°W 7.62°W

Saharan Dust Leaving Africa and Arriving to the Americas

June 13th 2020

HARP Multi-Angle

UMBC

Full Algorithm Development

Dubovik et al 2011, 2014

13-June-2020 Saharan Dust Transport

2020-06-13T09:09:47-Projected RGB

Latitude

23-June-2020 Saharan Dust Transport

2020-06-23T18:42:22-Projected RGB

atıtude

Measured dust particle properties

0.8

K AOD_{Coarse}, 550nn

25-August-2020 California-Oregon Fire

25-August-2020 California-Oregon Fire

3

 $\mathbf{2}$

Fine mode AOD

6.6 km resolution AOD retrievals

550*nm*

5 AOD_{Coarse, 5}

- 3

Level-2 Cloud Microphysics Retrieval from Space

First Ever Hyper-Angular Cloudbow Retrieval from Space

HARP Nadir Pushbroom

UMBC

Cloud Phase Retrieval

Polarized Radiance (670,550,440)

Literature Reference

Parol et al. 2004 Goloub et al., 2000

HARP2 – being built for PACE Spacecraft

PACE Mission Swath

Thank you.

Calibration/Validation with other satellites

Anin Puthukkudy*, Noah Sienkiewicz*

(*) Graduate students

HARP Intercomparisons with other Satellites

03-May-2020 HARP X Geostationary ABI

Salar De Uyuni (Bolivia) [ABI data resampled in HARP lat-lon grid]

2020-05-03T16:33:12-Projected RGB

01-Jul-2020

Comparison with VIIRS on S-NPP over the Salr De Uyuni salt flat

2020-07-01T17:03:47 #angle = 84

