

Constraining the micro and macro-structures of Saturn's C ring by modeling Cassini optical and thermal opposition effect

E. DÉAU^{a,b}, L.J. SPILKER^b, A. FLANDES^c, R. MORISHIMA^b, and the CIRS Ring Team

(a) SETI Institute
 (b) NASA Jet Propulsion Laboratory
 (c) Ciencias Espaciales UNAM Mexico

Introduction

Introduction Methods & models Problem statement Results Conclusions

Why study the ring opposition effect?

With the opposition effect, we can constrain:

> - the ring layer (macro-structure)

- the regolith layer (micro-structure)

regolith roughness

ring roughness

regolith shadow hiding

HOWEVER

Coherent backscattering is a matter of debate among theorists.

(Shkuratov & Zubko 2008 Icarus Petrova et al. 2008 Icarus Tishkovets & Mischenko 2010 JQSRT Hapke & Nelson 2010 JQSRT)

coherent <u>backscattering</u>

Using thermal data to narrow down CB

Problem statement Methods & models

Thermal Opposition Effect

Introduction

- * observed by Altobelli (2007) in far-infrared
- * is independent of the coherent backscattering

Results

Conclusions

Visible Opposition Effect

- * observed by Muller (1883)
- can be explained by coupling of regolith Shadow Hiding, interparticle Shadowing, and Coherent Backscattering (Salo and French, 2010)

Why the C ring?

The C ring has very distinct radial variations of microscopic signatures and macroscopic signatures

Problem Statement

Convolved signatures of CB and SH

D,=0.25

D,=0.32

D.=0.37

2.5

Coherent backscattering (Poulet et al., 2002/Shkuratov et al., 1999)

1.5

Optical depth $\tau_{\rm e}$

2.0

d : grain size (from Filacchione et al., 2012) D : filling factor (from Salo & Karjalainen, 2003) τ : optical depth (proxy from Déau et al., 2013)

Signature of coherent backscatter is <u>similar</u> to the one of the interparticle shadowing.

Déau 2014 Icarus In Press

0.5

1.0

0.0

Previous thermal results

Using CIRS (Composite Infrared Spectrometer) Focal Plane 3 (mid-IR)

- "narrow thermal surge"
- logarithmic trend
T = a₀*Log α + a₁
- could be a linear trend?

(Altobelli et al., 2007 Icarus)

Trend of the thermal surge morphology with τ is not clear

(Déau et al., 2012, DPS)

C ring : CIRS puzzle # 2

Thermal surge is surprisingly very narrow

(Déau et al., 2012, DPS)

Cring: CIRS puzzle # 3

(Déau et al., 2012, DPS)

Goal of this work

Conclusions

Results

* Unveil the nature of the optical and thermal opposition effects

 $\mathbf{\overline{\mathbf{V}}}$

* Define domain of shadow hiding

Constrain the rings micro and macro-structures

Introduction Problem statement Methods & models

Methods & models

Micro and macro signatures data

Band depth \rightarrow grain size (microscopic signature meta-data) Optical depth $\rightarrow \tau$ -slope (macroscopic signature meta-data)

Introduction Problem statement Methods & models Results Conclusions ISS_CLORE_OPHASEOO1_VIMS (Déau et al., 2013 Icarus) Phase angle α 0.01° Plateau 2 (R=86503km; rpg=0.396) HWHM=0.57 deg HWHM=0.57 deg

2.43°

CIRS data

scan d

CIRS_009RI_SUBML20LP001_PRIME

2005-157T03:00:35

accurate signal with small error-bars

CIRS data

Methods & models

2 strategies

Introduction

Problem statement

Broad surge with FP3+FP1 in T_{eff}

Results

Conclusions

Models & Methodology

(Déau et al., In prep.)

_	Model	Eq.	Prediction	Fit	Narrow surge	Broad surge	I/F	I_{ν}	Т
	Logarithmic model	Eq.(14)		Ø	Ø		Ø		
σ	Logarithmic model	Eq.(19)		Ø	Ø			Ø	
.Ŭ	Logarithmic model	Eq.(20)		Ø	Ø				Ø
Ő	Linear-by-parts model	Eq.(17)		Ø	Ø		Ø		
P O L	Linear model	Eq.(23)		Ø		Ø			Ø
or O	Linear-logarithmic model	Eq.(21)		Ø	Ø			Ø	
Ĕ	Linear-logarithmic model	Eq.(21)		Ø	Ø				Ø
	Linear-exponential model	Eq.(25)		Ø		Ø			Ø
	Coherent backscattering model	Eq.(32)	Ø		Ø		Ø		
-	Shadowing model	Eq.(35)	Ø			Ø	Ø	ø	Ø
0	Shielding model	Eq.(36)	Ø			Ø			
Syc	Thermo-physical model	Eq.(37)	Ø						Ø
à	Toy-model	Eq.(43)		Ø		Ø	Ø		
_	Toy-model	Eq.(45)		Ø	Ø	Ø		Ø	

The perfectly complete model doesn't exist yet.

Our method is:

- (1) Compare morphological parameters that fit the data to microscopic and macroscopic signatures
- (2) Compare morphological parameters that fit the data to the ones predicted by radiative transfer models
- (3) Derive physical parameters from fit and compare them with the ring properties from independent studies

Results

(1) Comparison of surge morphology with micro and macro-signatures

* Microscopic signature Water ice band depth

* Macroscopic signature

Slope of optical depth with elevation

(1) Comparison of surge morphology with micro and macro-signatures

(2) Comparison with predicted trends

Coherent backscattering model

 $A_{cb} \sim 1 + \frac{\exp(-d/L)}{2}$

Region	τ	d(um)	$L(\mu m)$	Ach
Distant 1	• PPS	4 (411)	75.25	1 47
Plateau 1	0.425	4.59	15.55	1.47
Plateau 2	0.396	4.70	74.23	1.47
Plateau 3	0.239	9.47	65.77	1.43
Plateau 4	0.307	12.05	70.10	1.42
Plateau 5	0.355	15.35	72.48	1.40
Background	0.133	4.33	52.25	1.46

Interparticle shadowing (ray-tracing)

mono-size distribution B=21°, B'=21°

Region	τ.	A
Plateau 1	0.425	1.85
Distant 2	0.425	1.05
Plateau Z	0.390	1.70
Plateau 3	0.555	1.01
Plateau 4	0.307	1./0
Plateau 3	0.239	1.69
Background	0.133	1.53

Problem statement Methods & models Introduction Results Conclusions

(2) Comparison with predicted trends

Multilayer thermal transport model

(Morishima et al., 2010)

M2009

150

τ. M2009

100

 τ_1 : raw optical depth τ_2 : convolved optical depth to FP1 footprint

Shadowing domain $\alpha < 40^{\circ}$

Roughness model

Could be consistent if roughness correlated with τ

Conclusions

Conclusions

1) Compare morphological parameters that fit the data to microscopic and macroscopic signatures

- * optical surge --> microscopic signature
- * broad thermal surge --> macroscopic signature

Compare morphological parameters that fit the data to the ones predicted by radiative transfer (RT) models

* There is a thermal surge caused by shadowing (α domain < 40°)

 Coherent backscattering explains well amplitude surge trend of plateaus and background

3) Derive physical parameters from RT model fit and compare them with the ring properties from independent studies

* Roughness

. Work in progress

* Filling factor

Supplementary material

Future work

Results

Conclusions

Introduction Problem statement Methods & models

(Déau et al., in prep.)

Constraining the micro and macro-structures of Saturn's rings by modeling Cassini optical and thermal opposition effect: 1. The C ring

Estelle Déau^{1,a,b}, Linda J. Spilker^a, Alberto Flandes^c, Ryuji Morishima^a, and N. Altobelli^e, S. Pilorz^b, J. Colwell^f

^aNASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, United States ^bSETI Institute, Mountain View CA, United States ^cCiencias Espaciales, Instituto de Geofísica, UNAM, México D.F., México ^dSouthwest Research Institute, Boulder CO, United States ^eESA / ESAC, Villafranca Del Castillo, Madrid, Spain ^f Department of Physics, University of Central Florida, Orlando FL, United States

