Propellers in Saturn's rings

M. Sremčević
G.R. Stewart
N. Albers
L.W. Esposito

Rings Workshop
August 13, 2014

Propellers: traces embedded bodies

N-body simulation (w/o SG)

Bleriot: the largest known trans-Encke propeller.
(N1586641169 and N1586641255, 3km/pixel, lit geometry)

Bleriot: Zet Per R42 occultation

Zet_Per_R42_out (egress), $1 \mathrm{~ms}, 2007-098 T 18: 41, B=38.0^{\circ}, \Delta r=2.2 \mathrm{~m}, \#=230096$

Bleriot: Zet Per R42 occultation

Zet_Per_R42_out (egress), $1 \mathrm{~ms}, 2007-098 \mathrm{~T} 18: 41, \mathrm{~B}=38.0^{\circ}, \Delta \mathrm{r}=2.2 \mathrm{~m}, \#=12183$

Possible interpretation: a gap + flanking wakes

Statistical significance of features

- Voyager Uranus data \& Cassini F ring: M test based on Poisson statistics (J. Colwell)
- But: \mathbf{M} test is not applicable to main rings (microstructure changes significantly statistics, e.g. excess variance and autocorrelations)
- T-test: do two data sets have same mean or not?

$$
T=\frac{\bar{x}-\bar{y}}{\sqrt{\frac{\sum_{i=0}^{N-1}\left(x_{i}-\bar{x}\right)^{2}+\sum_{j=0}^{M-1}\left(y_{i}-\bar{y}\right)^{2}}{(N+M-2)}\left(\frac{1}{N}+\frac{1}{M}\right)}}
$$

Bleriot motion: linear fit around Zet Per

Bleriot: resulting Zet Per geometry

Zet Per geometry: hi-res ISS example

Bleriot: Zet Per R42 occultation

Zet_Per_R42_out (egress), $1 \mathrm{~ms}, 2007-098 \mathrm{~T} 18: 41, \mathrm{~B}=38.0^{\circ}, \Delta \mathrm{r}=2.2 \mathrm{~m}, \#=12183$

Interpretation: a gap + 2 flanking wakes

Zet Per vs Bleriot geometry uncertainty

- Occ dR <= 0.5km (ring edges) (~100ms down-the-track)
- Occ dL??? pessimistic $10 \times \mathrm{dR}<=10 \mathrm{~km}$
- Bleriot dR <=50m (mean motion very precise)
- Bleriot dL <=10km (max scatter)

Bleriot in Zet Per: wake model

Stewart (1991) simple wake model $\mathrm{R}_{\text {Beriot }}=200 \mathrm{~m}$ predicts too many wakes!

Bleriot in Zet Per: wake model

Maonlet radius $\mathrm{R}=800 \mathrm{~m}$

$R_{\text {Bleriot }}=800 \mathrm{~m}$ predicts too few wakes!

Bleriot in Zet Per: wake model

$R_{\text {Bleriot }}=400 \mathrm{~m}$ looks like a possible solution

Bleriot new detection: Alp Lyr R175

Bleriot new detection: Alp Lyr R175

Bleriot new detection: Alp Lyr R175

Bleriot @ Alp Lyr R175: UVIS vs VIMS

Bleriot motion: 3 harmonics fit

Summary

- 2 UVIS (+1 VIMS) occultation of Bleriot
- Bleriot shape: gap + wakes.
- Images show propeller wakes.
- Bleriot embedded body of $\sim 400 \mathrm{~m}$ in size. Consistent with other estimates!
- 2 sines fit to Bleriot motion: $2400 \mathrm{~km}+230 \mathrm{~km}$ amplitudes (30 km rms). $3^{\text {rd }}$ sine with 40 km amplitude leaves rms<20km.

