Propellers in Saturn's rings

M. Sremčević

G.R. Stewart N. Albers L.W. Esposito

Rings Workshop August 13, 2014

Miodrag.Sremcevic@lasp.colorado.edu

Propellers: traces embedded bodies

N-body simulation (w/o SG)

Bleriot: the largest known trans-Encke propeller.

(N1586641169 and N1586641255, 3km/pixel, lit geometry)

Bleriot: Zet Per R42 occultation

Zet_Per_R42_out (egress), 1ms, 2007-098T18:41, B=38.0°, Δr=2.2m, #=230096

Bleriot: Zet Per R42 occultation

Possible interpretation: a gap + flanking wakes

Statistical significance of features

 Voyager Uranus data & Cassini F ring: M test based on Poisson statistics (J. Colwell)

- But: M test is not applicable to main rings (microstructure changes significantly statistics, e.g. excess variance and autocorrelations)
- T-test: do two data sets have same mean or not?

$$T = \frac{\bar{x} - \bar{y}}{\sqrt{\sum_{i=0}^{N-1} (x_i - \bar{x})^2 + \sum_{j=0}^{M-1} (y_i - \bar{y})^2} (\frac{1}{N} + \frac{1}{M})}$$

Bleriot motion: linear fit around Zet Per

Bleriot: resulting Zet Per geometry

Zet Per geometry: hi-res ISS example

Interpretation: a gap + 2 flanking wakes

Zet Per vs Bleriot geometry uncertainty

- Occ dR <= 0.5km (ring edges) (~100ms down-the-track)
- Occ dL???
 pessimistic 10 x dR <= 10km
- Bleriot dR <=50m (mean motion very precise)
- Bleriot dL <=10km (max scatter)

Bleriot in Zet Per: wake model

Bleriot in Zet Per: wake model

R_{Bleriot}=800m predicts too few wakes!

Bleriot in Zet Per: wake model

R_{Bleriot}=400m looks like a possible solution

Bleriot new detection: Alp Lyr R175

Bleriot new detection: Alp Lyr R175

Bleriot new detection: Alp Lyr R175

Bleriot motion: 2 harmonics fit

Final residual still has a pattern.

Bleriot motion: 3 harmonics fit

Summary

- 2 UVIS (+1 VIMS) occultation of Bleriot
- Bleriot shape: gap + wakes.
- Images show propeller wakes.
- Bleriot embedded body of ~400m in size.
 Consistent with other estimates!
- 2 sines fit to Bleriot motion: 2400km + 230km amplitudes (30km rms). 3rd sine with 40km amplitude leaves rms<20km.