MERCURY:

The Key to Terrestrial Planet Evolution

MESSENGER will start a yearlong study of its
target planet in March 2011. Understanding this
"end member" among the terrestrial planets is
crucial to developing a better understanding of
how our own Earth formed, how it evolved, and
how it interacts with the Sun.

http://messenger.jhuapl.edu/;

The first space mission designed to orbit the planet closest to the Sun

MESSENGER

MErcury Surface Space ENwronment GEochemistry, and Ranging
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MESSENGER

Overview

» Analyze the measurements of Mercury’s exospheric magnesium

obtained by the MESSENGER probe during its second and third Mercury
flybys.

» Constrain assumed model parameters for Mercury: sticking coefficients,
source and loss processes, and velocity distributions.

»Models progress in order of complexity:
- Chamberlain models (uniform ejection)
*models of the expected source processes (e.g., impact vaporization, sputtering)

* non — uniform models and models of the energy exchange with the surface
(meteor stream? Thermal accommodation?)
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MESSENGER

Observational Sequence
Mercury Flyby 2

Nightside Fantail

Na, Ca, Mg Dayside

Extended Tail H

Na, Ca, Mg
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Near-Dawn
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Anti-Sunward
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MESSENGER

Tail Observations

3 Tail Measurements
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! * Tail is populated by energetic ejecta

* “Temperature” is high, 2 20,000 K, but unconstrained
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MESSENGER

Inferred Production rates

* From tall measurements fit to Chamberlain models
(uniform ejection):

e M2: 3x10% atoms cm2 s

The source rates needed to
describe data are similar or
actually slightly reduced
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MESSENGER

vidence of a Two-component exosphere
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The source rates needed to describe data near and far from the planet with a single !
temperature are inconsistent with the loss rate to photoionization
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MESSENGER

Cold components during M3?
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* Polar profile over the south can more or less be fitted to a single temperature
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7/  MESSENGER

‘ﬁ Processes that promote magnesium into the tail
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MESSENGER

Relative roles of Mg sources
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MESSENGER

Limitations of pointing geometry
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MESSENGER

-nhancement near terminator: a meteor stream?
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Models of the fantail (left) and near-
terminator (right) measurements
markedly improve if a meteor
stream impacted Mercury within
+10° of equatorial dawn.

10°F (a) Fantail Near:term'inat.'

Intensity (R)

Consider enhancements by factors of
two (upper panel), four (middle panel)
and six (lower panel) over the uniform

Intensity (R)

impact vaporization rate, ng,.

Intensity (R)

Black: T=3000 K; blue ,T=20000 K.

1

Inferred n, ~ 150 cm3

150 100 50 0200 400 600 800
Angle Relative to Equatorial Dawn Distance to Shadow
() (km)

3 November 2010 MESSENGER-BepiColombo Workshop




Man cem enEn ea@erm Inator:

a dayside source that is colder than impacts?

Assume that returning atomic Mg atoms
(or nightside MgQO) weakly physisorb
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Assuming T=1200 K =
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ESSENGER

Enhancement near terminator:
thermal accommodation/desoprtion?

Assume that returning Mg atoms do not stick upon impact but rebound
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MESSENGER

Suggestions

Net Production unchanged between M2 and M3

1) Two-temperature exosphere: a hot ejection process at temperatures >10000
K, and a competing source at lower temperatures, 3000-5000 K

- The cooler component is consistent with impact-driven rates
2) Tail: Sputtering can provide only 20-25% of Mg in tail
- Residual exosphere points to photolysis of a Mg-bearing molecule

Data consistent with a number of source processes all contributing

approximately equally to total production

3) Sharp increase in emission observed near the dawn terminator region

(M2):

a “localized” meteor stream? Photodesorption of volatile Mg that is released by impacts and
then recycles? Surface discontinuity in Body Fixed Coordinates? Source of rebounding
particles?.
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MESSENGER

Constraints to models needed

* Metallic Mg:

--sticking coefficients

--possibility of PSD ?

--thermal desorption?

e MgO

--Dissociation by photons and vibrational modes?
--Lifetimes?

--If adsorbed onto surface, can MgO release Mg by UV
photons as by lasers in the lab?
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