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Science Goals

• Understand Mercury’s magnetosphere on a 
kinetic level and relationship with exosphere
– global magnetic and electric field configuration and 

connectivity between solar wind and planet surface
– ion and electron transport, energization and 

circulation within the magnetosphere (including 
wave-particle interactions & non-adiabatic motion)

– solar wind ion and electron precipitation
– transport of heavy ions emanating from planetary 

surface in and around Mercury’s magnetosphere 
Magnetosphere ⇔ Exosphere/Heavy Ion Cloud



Simulation Approach

• 3D global self-consistent hybrid code
– kinetic ions, (massless) fluid electrons
– use realistic spatial scales and solar wind 

parameters to drive the system
• Particle trajectory tracing in global E and B

fields specified by the hybrid simulations
– launch full 3D electron distribution functions from 

the solar wind and collect data at virtual detectors
– examine kinetic particle transport and acceleration 

through the magnetosphere
– determine electron energies and precipitation fluxes



Solar Wind During MESSENGER Flybys

• M1 on January 14, 2008
– speed = 450 km/s, density = 15 cm-3 (inferred) 
– northward interplanetary magnetic field (IMF)
– large radial IMF component (sun-planet direction)

• M2 on October 6, 2008
– speed = 450 km/s, density = 15 cm-3 (inferred)
– southward interplanetary magnetic field (IMF)
– large radial IMF component (sun-planet direction)

Ideal control experiment to study reconnection as a 
function of north/south IMF
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Electron Particle Launches

Use fields from the hybrid simulations 
for M1 and M2 conditions with: 

nsw = 15 cm-3

vsw = 450 km/s

SW electron launches
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Equatorial Plane Energy Profiles

Average energies higher in southward IMF case (M2)
- more efficient reconnection  
- energization occurs due to non-adiabatic motion



Electron Precipitation Flux Maps



Electron Precipitation Average Energy
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Electron Energization (Northward IMF)
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κ = (R/ρ)1/2 κ < 3 indicator of 
non-adiabatic 

(demagnetized) 
motion



Conclusions 
• Transport

– large radial component of IMF influences solar wind 
magnetic connectivity with Mercury, which affects 
transport and entry into magnetosphere

– magnetospheric entry rate into equatorial region 
higher for southward IMF (M2)

• Energetics 
– non-adiabatic motion is important for electrons
– energies higher for southward IMF (~ 10 keV) 

compared to northward IMF (~ 1 keV)
– highest magnetospheric energy  ~ 25 keV (M1/M2)

• Precipitation (next slide)



Precipitation Numbers 
• Northward IMF (M1)

– higher precipitation fluxes in northern hemisphere
– fluxes: ~ 1.0 × 1010 cm-2s-1, avg. energy ≤ 1 keV
– total precipitation area: ~ 1.6 × 106 km2

– total electrons precipitating: 1.0 × 1026 (per second)
• Southward IMF (M2)

– higher precipitation fluxes equator to north
– fluxes: ~ 1.5 × 1010 cm-2s-1, avg. energy ≥ 1 keV
– total precipitation area: ~ 1.5 × 106 km2

– total electrons precipitating: 1.1 × 1026 (per second)
Implications for Electron Stimulated Desorption



Model Limitations – Future Directions
• Flux normalization depends on solar wind 

parameters, e.g, density, flow speed & direction
– no solar wind monitor, thus no hard SW numbers
– use magnetopause location to infer solar wind 

pressure; use ENLIL SW model to further constrain
• Only solar wind considered for electron source

– electrons from planet, from deep magnetotail can 
populate open lobe field lines act as another source 

• Simulation runs for relatively small number of 
steady, low pressure solar wind conditions
– will consider higher solar wind pressure events
– new runs with variable solar wind
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