Studies of Atmospheric Response to the Solar Cycle Using the NCAR Whole Atmospheric Community Climate Model

Rolando Garcia, Byron Boville, Doug Kinnison, Dan Marsh, Ray Roble, Fabrizio Sassi, and Stan Solomon

National Center for Atmospheric Research

Motivation for the WACCM Model

- Coupling between atmospheric layers:
 - Waves transport energy and momentum from the lower atmosphere to drive the QBO, SAO, sudden warmings, mean meridional circulation
 - Solar and geomagnetic inputs, e.g., auroral production of NO in the mesosphere and downward transport to the stratosphere
 - Stratosphere-troposphere exchange
- Climate Variability and Climate Change:
 - What is the impact of the stratosphere on tropospheric variability, e.g., the Arctic oscillation or “annular mode”?
 - How important is coupling among radiation, chemistry, and circulation? (e.g., in the response to O₃ depletion or CO₂ increase)
- Response to Solar Variability:
 - Recent satellite observations have shown that solar cycle variation is 0.1% for total Solar Irradiance
 - 5-10% at ~200 nm
 - Radiation at wavelengths near 200 nm is absorbed in the stratosphere
 - Impacts on tropospheric climate may be mediated by stratospheric chemistry and dynamics

Heritage and Structure of the WACCM Model

- MOZART: Model for Ozone and Related Tracers
- CAM3: Thermosphere-Ionosphere-Mesosphere Electrodynamics General Circulation Model
- WACCM: Non-interactive chemistry Valid to ~100 km
- WACCM2: Interactive chemistry Valid to ~100 km
- Current Work: Include ionosphere Extend validity to ~150 km

Some Recent Results

- Use solar and geomagnetic inputs from one “typical” cycle
- Probably a recent one so that good measurements are available
- Proxy-based models using TBD inputs (F₁₀.7, MgII c/w, S_n, K_p…)
- Daily / hourly cadence
- Repeat using identical inputs for ~8–10 cycles
- Necessary to average the natural variability out of the troposphere
- Considerable computational expense
- For the future: Long-term runs with combined forcing, using historical proxy record
 - Extreme computational expense

Plan for Solar Cycle Studies

- For l > 200 nm:
 - Heating rates based on CAM3 parameterization
 - Photolysis using lookup table based on TUV model
 - [Madronich & Flocke, 1998]
- For l < 200 nm:
 - Schumann-Runge bands parameterization:
 - [Koppier & Murtagh, 1996; Mischwasser & Siskind, 1993]
 - Schumann-Runge continuum:
 - Direct calculation using ~5-nm bins
 - Lyman-α parameterization:
 - [Chabrillat & Kockarts, 1997]
 - EUV & X-ray parameterization, including photoelectrons:
 - [Solomon & Chai, 2003 AGU, SA41B-0427]