GONG Near-Realtime Active Region Imagery as a Pathfinder for LWS/SDO

Doug Braun¹, Kerri Donaldson-Hanna², John Harvey², Rachel Howe², John Leibacher², Charles Lindsey¹, Anna Malanushenko³, and Jeff Sudol²

¹Colorado Research Associates, ²National Solar Observatory, ³University of St. Petersburg

The six-site Global Oscillation Network Group (GONG) helioseismic network now produces once per minute magnetograms, as well as pseudo-continuum and line strength maps in the Ni I 6768 Å line with 2.5 arcsecond pixel resolution, and twice a day images of the farside of the Sun, in near-real-time.

Images of the farside show great predictive potential, and GONG will soon be producing such images twice per day. Above: an MDI image of changes in the sound travel time over a synoptic chart of the whole Sun. Below: a simultaneous GONG image.

The X10 flare in AR 10486 on 28 October 2003 displayed significant magnetic field and "white light" changes. The signature of the flare is clearly visible as a 30% increase of intensity, accompanied by a 50% decrease in the line strength and significant changes in the magnetic flux strength and configuration.

Above: the temporal variation of the total intensity, line strength, and magnetic flux at the pixel indicated by a cross in the images.

Down the left-hand side: one-minute-averaged, 250-arcsecond-square images of the total intensity, line strength, and magnetic flux starting at 2041, with the 2031 image subtracted.

The online magnetograms are summed over five minutes and have a noise of 1 gauss and a zero-point uncertainty of as much as 10 gauss, which a hardware fix should be able to reduce by an order of magnitude, with the prospect of further improvements in the calibration or a new modulator.

Images of the farside show great predictive potential, and GONG will soon be producing such images twice per day. Above: an MDI image of changes in the sound travel time over a synoptic chart of the whole Sun. Below: a simultaneous GONG image.

The X10 flare in AR 10486 on 28 October 2003 displayed significant magnetic field and "white light" changes. The signature of the flare is clearly visible as a 30% increase of intensity, accompanied by a 50% decrease in the line strength and significant changes in the magnetic flux strength and configuration.

Above: the temporal variation of the total intensity, line strength, and magnetic flux at the pixel indicated by a cross in the images.

Down the left-hand side: one-minute-averaged, 250-arcsecond-square images of the total intensity, line strength, and magnetic flux starting at 2041, with the 2031 image subtracted.

Continuous once a minute imagery turns up all sorts of interesting things such as this white light flare at the limb on 4 Nov 2003.

Acknowledgments

The farside imaging is supported by NASA LWS TR&T Grant NASA W-10,230. The Global Oscillation Network Group (GONG) program is managed by the National Solar Observatory, which is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísica de Canarias, and Cerro Tololo Inter-American Observatory.