Modeling Solar Irradiance With the PSPT Solar Disk Observations and RISE Solar Spectrum Synthesis

Sean M. Davis¹, Juan Fontenla¹, Jerald W. Harder¹, Gary Rottman¹, and Randy Meisner²

¹Laboratory for Atmospheric and Space Physics University of Colorado, 1234 Innovation Drive, Boulder, CO 80303
²High Altitude Observatory, National Center for Atmospheric Research PO BOX 3000, Boulder, CO 80307

ABSTRACT

The PSPT (Precision Solar Photometric Telescope) at the Mauna Loa Solar Observatory provides full disk solar images from 200 nm to 2.0 µm (10 ppm at 1.35µm) and (2.0-5.1µm), allowing for the simultaneous observation of solar features in five broadband channels. The RISE (Radiation and Climate Experiment) satellite measures the full solar spectrum (200 nm - 2700 nm) with a goal of 300 ppm precision for irradiances. The RISE-RSPT comparison provides an opportunity to determine the accuracy of the analysis and calibration of the instrument. The PSPT images are efficiently analyzed using the PSPT/RISE Image Analysis Algorithm. The RISE/PSPT images are used to study the distribution and evolution of irradiance features on the solar surface. The goal of this study is to demonstrate the accuracy of the RISE-derived center-to-limb variation functions for each feature and position on the disk. We use the RISE-derived functions to compute a spectral irradiance for the solar disk. We compare the RISE-derived spectra for each feature and position on the disk. We present the results of a study of the physical origins of solar variability arising from variations of surface structures. We combine the above with spectral synthesis models of lines and broad spectral bands to compute a spectral irradiance for a particular state of the sun.

RISE Model Overview

- Studies the physical origins of solar variability arising from variations of surface structures
- Uses semi-empirical models of the solar atmosphere to synthesize the intensity spectrum from the observed irradiances
- Determines the distribution and evolution of surface features that contribute to irradiance variations
- Combines the above with spectral synthesis models of lines and broad spectral bands to compute a spectral irradiance for a particular state of the sun

PSPT/RISE Image Analysis Algorithm

1. Preprocessing (Both Images): The images are processed to remove effects of the CCD hot field, lens ghosts, and pixel noise, and harmonics of the instrument. Images are then normalized.
2. Mask Image: The images are normalized and divided by the instrument function to remove the effects of the flat field.
3. Masked Image: Each pixel assigned to a model
4. Output Image: Each pixel assigned to a model
 - Relative area of each model

Solar Irradiance Synthesis with the RISE Model

1. Compute Area-Weighted Average Disk Intensity
 \[I_a(\lambda) = \sum \frac{I_{m,j}(\lambda)A_{m,j}}{\Delta\lambda} \]
 where:
 - \(I_{m,j} \) = Intensity of model \(m \) feature at weighted-center of the \(j \) annulus
 - \(A_{m,j} \) = Relative area of model \(m \) features in \(j \) annulus
 - \(I_a \) = Average Disk Intensity (Wm^-2nm^-1a^-1)

2. Compute Irradiance or Brightness Temperature
 \[R = \sum \frac{I_{m,j}(\lambda)A_{m,j}}{\Delta\lambda} \]
 where:
 - \(R \) = Solid Angle of the Sun at 1 AU (6.7995 x 10^-5 sr)
 - \(I_a \) = Irradiance at 1 AU (Wm^-2 nm^-1)
 - \(T_b \) = Brightness Temperature (K)

Sample RISE-Synthesized Spectrum

Comparison of PSPT/RISE and SORCE Irradiances

- TIM and Visible-Band Irradiance Plot
 - TIM: 750nm “Visible” Irradiance from PSPT/RISE
 - Both data sets plotted: 200 ppm at 1.008 ppm from their means
 - Data show good general agreement, but much room for improvement