Solar and QBO Influence on the North Annular Mode

Alexander Ruzmaikin

in collaboration with
J. Feynman (JPL), X. Jiang, Y. Yung (Caltech)
A. C. Cadavid and J. K. Lawrence (CSUN)
The Key Elements

- Major Mode of Atmospheric Variability (NAM)
- Tropical Winds (QBO)
- Solar Variability (strongest in UV)
- Nonlinear Dynamics of Wind & Waves (mechanism)
Annular Modes

NAM and SAM

Ring-like patterns of wintertime climate anomalies with two states:

NAM > 0
 high lat: low pressure, strong wind
 low lat: high pressure, weak wind

NAM < 0 the other way round

22% of variability at sea level more in stratosphere

Alternate easterly - westerly tropical wind regimes (mean period 28mo)

Amplitude 40 - 50 m/s.

Appear above 30 km (~10 hPa) and propagate down 1 km/month.

Influences polar regions in the East phase (Holton-Tan effect)
Solar Influence on the North Annular Mode

In early (late) winter for West (East) QBO UV effect on NAM is not damped 10-850hPa

NAM index is persistently low in troposphere during Maunder Minimum

Ruzmaikin & Feynman (2002)
NAM Temperature Anomaly
sol max - sol min

Agrees well with irradiance sensitivity at periods of low solar output

Ruzmaikin et al. (2004)
Observed Basins of Attractors

PDF(U,X₂)

NCEP data
1948-2003
60º lat, 20 hPa

Ruzmaikin, Cadavid & Lawrence (2004)
Imprint of the QBO in Extratropics

Geopotential height anomalies Nov-Feb

NCEP1 1958-78
NCEP2 1979-02

QBO at 40 hPa
QBO Modulation of the EP flux
(Holton-Tan)

Wave 1
EP flux for East and West QBO (Oct-Mar) at 20 and 200 hPa

NCEP1 1958-78, NCEP2 1979-2002
QBO Modulation of the EP flux

Wave 2
EP flux for East and West QBO (Oct-Mar) at 20 and 200 hPa

NCEP1 1958-78, NCEP2 1979-2002
QBO Circulation Anomaly
(Kinnersley-Tung)

Stream Function

\[\bar{\rho}_0 w^* \cos \phi = \partial \frac{\partial}{\partial y} \]

\[\bar{\rho}_0 v^* \cos \phi = - \partial \frac{\partial}{\partial z} \]

NCEP1 1958-78
NCEP2 1979-02
QBO at 40 hPa
Polar Temperature as Proxy for the NAM

Polar temperature is strongly anti-correlated with the NAM

\(\frac{\partial}{\partial t} q + w^* q = -q + \bar{Q}_0 \)

Cap-average \(\bar{q} \) (\(f \) to \(\pi/2 \))

\(\frac{\partial}{\partial t} \langle \bar{q} \rangle + \bar{q} \langle \bar{q} \rangle = \frac{\bar{Q}_0 z}{a(1 - \cos \bar{q})} + \bar{Q}_0 \)

\(\bar{q} = \bar{q}_0 (B + \cos \bar{q} a t) [1 + \bar{q} \cos (\bar{q}_Q t + \bar{\theta})] \)

(Gillett, Baldwin & Allen, 2001)

(Newman, Nash & Rosenfeld, 2001)
Spectrum of Polar Temperature (and NAM)

NCEP data 1958-2002
Annual frequency is mostly filtered out
Conclusions

- QBO and solar variability affect NH dynamics through the North Annual Mode

- Changes occur in occupation frequencies and positions of the two states of the NAM

- The mechanism operates through nonlinear wind-wave dynamics